Lunar ³He and Fusion Power

John F. Santarius

Fusion Technology Institute, University of Wisconsin

IEEE Rock River Valley Section, Rockford, Illinois September 28, 2004

The Rate of Fusion Related PhD's Graduated From the University of Wisconsin is 1/3 of that in the 1980's

UW Investigates Several Fusion Configurations

MST-Physics

Pegasus - Engineering Physics

HSX - Electrical & Computer Engineering

IEC - Engineering Physics

Fusion Combines Light Isotopes to Create Other Particles

Fusion Converts Mass into Energy

"Advanced" Fusion Fuels Face a More Difficult Physics Development Path than D-T Fuel

Fusion Technology Institute

D-³He Fuel Faces

Larger Physics Obstacles than D-T

- D-T fueled innovative concepts become limited by first-wall neutron or surface heat loads well before they reach
 β (=plasma pressure/B-field pressure) or B-field limits.
- D-T fueled tokamaks ($\beta \sim 5\%$) optimize at B ~ 15 T.
- D-³He needs a factor of ~80 above D-T fusion power densities.
 Power Density Relative to a
 - Superconducting magnets can reach at least 20 T.
 - > Fusion power density scales as $\beta^2 B^4$.
 - Potential power-density improvement by increasing β and B-field appears at right.

Inertial-Electrostatic Fusion Depends on Creation of a Radial Electrostatic Well and Spherically (or Cylindrically) Convergent Ion Flow

- 1. Inner grid (cathode) is biased to a high negative potential.
- 2. Fuel gas flows into the chamber and pressure is maintained.
- 3. Positive ions are created around the outer grid (anode).
- 4. Ions accelerate toward inner grid, gaining fusion-relevant energies.
- 5. Ions and electrons ionize neutral gas.

- 5. Ions charge-exchange with neutrals, fuse with other ions or neutrals, or hit grids.
- 6. Charge-exchange neutrals fuse with background gas.
- 7. Particle detectors monitor reaction rates.

Low-Voltage, High-Pressure Conditions Produce Visible Electron Jets

R.L. Hirsch and G.A. Meeks: Mid-60's Ion-Gun-Driven IEC Experiment

- Operated with D-T fuel
- Generated ~10¹⁰ neutrons/s

Present UW Aluminum Chamber Provides a Large Volume Reaction Region

Fusion Technology Institute

Significant Progress Has Been Made in Achieving High-Voltage Operation

Fabrication System for Standardized Grid

1. Mold produced from rapid prototype model

2. Wax poured into mold

3. Wires wound around wax form

4. Wires spot welded at junctions

5. Wax form melted away at ~80 °C

6. Finished grid cathode

Maximum UW IEC D-D Neutron Production So Far is 1.8 x 10⁸ per Second

Fast He Ions Can Produce Significant Damage in Materials

Wire grid cathode was replaced by a sample target. Deuterium bombardment did little damage.

TaC irradiated at 830 °C with > $6x10^{17}$ D/cm².

Helium bombardment did significant damage.

HfC irradiated at 775 °C with $>6x10^{17}$ He/cm².

- Initial work on W by Ben Cipiti (submitted to J. Nucl. Materials, 2004).
- Presently part of Ross Radel's thesis research.

D-³He Fusion Protons Can Produce Useful Radioisotopes for Nuclear Medicine

Fusion Technology Institute

Parent Isotope	Production Reaction	PET Isotope	Half Life
¹⁸ O	(p, n)	¹⁸ F	110 min
^{14}N	(p, α)	¹¹ C	20 min
¹⁶ O ¹³ C	(p, α) (p,n)	¹³ N	10 min
¹⁵ N	(p, n)	¹⁵ O	2 min

UW IEC Experiments Produced ¹³N, a Valuable PET-scan Radioisotope

Helicon Ion Source Operating with UW's Spherical IEC Chamber

Thesis research by Greg Piefer

Fusion Can Be Accomplished in Several Ways

D-³He Fuel Will Lower Development Costs

Physics Readiness

(transport, disruptions, current drive, fueling, impurities, profiles)

D-³He Fuel Generally Gives Easier Engineering and Safety

- Reduced neutron flux allows
 - Smaller radiation shields
 - Smaller magnets
 - Permanent first wall and shield
 - Easier maintenance
- Increased charged-particle flux allows direct energy conversion
- But unburned tritium will be a proliferation and safety issue

- Charged-particle power transports from internal plasmoid (in an FRC or spheromak) to edge region and then out ends of fusion core.
- Expanded flux tube in end chamber reduces heat and particle fluxes, so chargedparticle transport power only slightly impacts the first wall.
- Mainly bremsstrahlung power contributes to first-wall surface heat.
 - > Relatively small peaking factor along axis for bremsstrahlung and neutrons.
- High power density does not necessarily imply unmanageable first-wall heat flux.

Field-Reversed Configuration (FRC) Would Be Attractive for Fusion Power

FRC as Power Source and Ion Engine for High Energy Space Missions

From Univ. of Washington web page for the Star Thrust Experiment (STX): www.aa.washington.edu/AERP/RPPL/STX.html

JFS 2004

Fusion Technology Institute

ARTEMIS Field-Reversed Configuration (D-3He, Momota, et al., NIFS, 1992)

The Low Radiation Damage in D-³He Reactors Allows Permanent First Walls and Shields to be Designed

Radioactive Waste Disposal is Much Easier for D-3He Reactors than for D-T Reactors

Proliferation-Resistant D-³He Power Plant May Be Possible

The ³He Fuel Source is an Issue —So Think Outside the Box

Escher, Other World, 1947

- ~400 kg ³He accessible on Earth (~8 GW-a fusion energy for R&D)
- ~10⁹ kg ³He on lunar surface for 21st century
- ~10²³ kg ³He in gas-giant planets for indefinite future
- L.J. Wittenberg, J.F. Santarius, and G.L. Kulcinski, "Lunar Source of ³He for Commercial Fusion Power," *Fusion Technology* 10, 167 (1986).

Significance of Lunar Helium-3

I tonne of He-3 can produce 10,000 MWe-y of electrical energy.

Colorbia

40 tonnes of He-3 collopproide for the *entire* US.S. electricity consumption in 2009.

NASA ,

United States

Lunar Helium-3 Is Well Documented

- Helium-3 concentration verified from Apollo 11, 12, 14, 15, 16, 17 and U.S.S.R. Luna 16, 20 samples.
- Current analyses indicate that there are at least 1,000,000 tonnes of helium-3 embedded in the lunar surface.

Spectral reflectance map of lunar Ti content

Measured correlation of He and Ti contents

Lunar ³He Mining Produces Other Volatiles Useful for Sustaining a Lunar Base

Lunar ³He Mining Would Use Well-Developed Terrestrial Technology

Earliest D-³He Reactor Design Was a Fusion Rocket

G.W. Englert, NASA Glenn Research Center *New Scientist* (1962)

"If controlled thermonuclear fusion can be used to power spacecraft for interplanetary flight it will give important advantages over chemical or nuclear fission rockets. The application of superconducting magnets and a mixture of deuterium and helium-3 as fuel appears to be the most promising arrangement."

Conventional Tokamaks Have High Mass

D-³He Space-Propulsion Tandem Mirror

The Dipole Configuration Offers a Relatively Simple Design That an MIT/Columbia Team Is Testing

Io plasma torus around Jupiter

LDX experiment (MIT)

D-³He Fusion Propulsion Could Provide Flexible Thrust Modes

Pulsed Fusion Also Holds Promise

 MTF: magnetized-target fusion would use a conducting liner to implode a magnetized plasmoid.
ICF: inertial-confinement fusion would use lasers or ion beams to implode a material target.

In both cases, ionized material from the fusion micro-explosion would reflect from a magnetic field to produce thrust.

> Magnetized-Target Fusion Artist's Conception from Marshall Space Flight Center

Direct Conversion to Electricity Could Take Advantage of the Natural Vacuum in Space

Plasmas Provide Many Materials Processing Capabilities

• B.J. Eastlund and W.C. Gough, "The Fusion Torch--Closing the Cycle from Use to Reuse," WASH-1132 (US AEC, 1969).

JFS 2004

Fusion Technology Institute

D-³He Fusion Will Provide Capabilities Not Available from Other Propulsion Options

Comparison of trip times and payload fractions for chemical and fusion rockets

Efficient cargo transport

