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The Rate of Fusion Related PhD's Graduated From the University of 
Wisconsin is 1/3 of that in the 1980's
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UW Investigates
Several Fusion Configurations

MST –Physics

4 m

HSX - Electrical & Computer Engineering

1.5 m

Pegasus - Engineering Physics

2 m

IEC - Engineering Physics

0.5 m



Fusion 
Technology 

Institute 
Research 
Activities

High Average 
Power Laser ICF 
Chamber (NRL)

High Energy 
Density Opacity 
and EOS (DOE)

ICF Radiation 
Hydrodynamics 
(U. Rochester)

Z-Pinch Reactor 
Design (SNL)

Materials for 
Pulsed Power 

(NRL)

Greenhouse Gas 
Emissions 
(ECOW)

Liquid-Metal 
Safety (DOE)

Coupling of
Neutronics & 3-D

CAD (DOE)

Resources from 
Space (Berndt, 

Grainger)

D-3He Fusion

IEC (Greatbatch, 
Grainger, DOE)

ITER Nuclear 
Technology 

(DOE)

ARIES Reactor 
Studies (DOE) Magnetized-

Target Fusion 
(DOE)
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Fusion Combines Light Isotopes
to Create Other Particles 

or helium-3

or proton

helium-4
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Fusion Converts Mass into Energy
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“Advanced” Fusion Fuels Face a More Difficult 
Physics Development Path than D-T Fuel

1st generation fuels:

D + T → n (14.07 MeV) + 4He (3.52 MeV)

D + D → n (2.45 MeV) + 3He (0.82 MeV)
→ p (3.02 MeV) + T (1.01 MeV)

{50% each channel}

2nd generation fuel:

D + 3He → p (14.68 MeV) + 4He (3.67 MeV)

3rd generation fuels:

3He + 3He → 2 p + 4He (12.86 MeV)

p + 11B → 3  4He (8.68 MeV)
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D-3He Fuel Faces
Larger Physics Obstacles than D-T
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D-3He  Fuel Could Make Good Use of the High Power Density 
Capability of Some Innovative Fusion Concepts

• D-T fueled innovative concepts become limited by first-wall 
neutron or surface heat loads well before they reach
β (=plasma pressure/B-field pressure) or B-field limits.

• D-T fueled tokamaks (β~5%) optimize at B ~ 15 T.
• D-3He needs a factor of ~80 above D-T fusion power 

densities.
Superconducting magnets can 
reach at least 20 T.
Fusion power density scales as 
β2 B4.
Potential power-density 
improvement by increasing β and 
B-field appears at right.

Power Density Relative toa
D-T Tokamakwith b=5%and B=15T
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Inertial-Electrostatic Fusion Depends on
Creation of a Radial Electrostatic Well and

Spherically (or Cylindrically) Convergent Ion Flow

1. Inner grid (cathode) is 
biased to a high negative 
potential.

2. Fuel gas flows into the 
chamber and pressure is 
maintained.

3. Positive ions are created 
around the outer grid 
(anode).

4. Ions accelerate toward 
inner grid, gaining 
fusion-relevant energies.

5. Ions and electrons ionize 
neutral gas.

5. Ions charge-exchange with neutrals, fuse 
with other ions or neutrals, or hit grids.

6. Charge-exchange neutrals fuse with 
background gas.

7. Particle detectors monitor reaction rates.

anode

cathode
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Low-Voltage, High-Pressure Conditions
Produce Visible Electron Jets 

D-D
30kV, 45mA, 6 mtorr
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R.L. Hirsch and G.A. Meeks: Mid-60’s
Ion-Gun-Driven IEC Experiment

• Operated with D-T 
fuel
• Generated ~1010

neutrons/s
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Present UW Aluminum Chamber Provides
a Large Volume Reaction Region
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Significant Progress Has Been Made 
in Achieving High-Voltage Operation
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Fabrication System for Standardized Grid

1. Mold produced from
rapid prototype model

10 cm

3. Wires wound around wax form

10 cm

2. Wax poured into mold

6. Finished grid cathode4. Wires spot welded at junctions 5. Wax form melted away
at ~80 °C
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Maximum UW IEC D-D Neutron
Production So Far is 1.8 x 108 per Second
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Fast He Ions Can Produce
Significant Damage in Materials

2 µm2 µm2 µm2 µm

Helium bombardment did 
significant damage.
HfC irradiated at 775 °C 
with >6x1017 He/cm2.

1 µm2 µm1 µm2 µm2 µm2 µm

Deuterium bombardment 
did little damage.
TaC irradiated at 830 °C 
with >6x1017 D/cm2.

Wire grid cathode 
was replaced by 
a sample target.

W target

• Initial work on W by Ben Cipiti (submitted to J. Nucl. Materials, 2004).
• Presently part of Ross Radel’s thesis research.
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D-3He Fusion Protons Can Produce
Useful Radioisotopes for Nuclear Medicine

Cross sections for producing the
PET-scan isotope 13N

• The glowing cathode shown here is 10 cm in diameter

D + 3He → p (14.68 MeV) + 4He (3.67 MeV)
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Examples of Positron Emitting Isotopes

2 min15O(p, n)15N

10 min13N
(p, α)
(p,n)

16O
13C

20 min11C(p, α)14N

110 min18F(p, n)18O

Half LifePET Isotope
Production 
Reaction

Parent Isotope
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UW IEC Experiments Produced 13N, a 
Valuable PET-scan Radioisotope

John 
Weidner
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Helicon Ion Source Operating with UW’s 
Spherical IEC Chamber

IEC Chamber

Ion source

Source Turbo pump

RF Matching

Gas Inlet

Discharge Tube

RF Antenna

Helicon 
Magnets

Extraction 
RegionExtraction 

Magnet

Differential 
Pumping

IEC Device

RF Matching

Gas Inlet

Discharge Tube

RF Antenna

Helicon 
Magnets

Extraction 
RegionExtraction 

Magnet

Differential 
Pumping

IEC Device

• Thesis research by Greg Piefer
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Fusion Can Be Accomplished
in Several Ways
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D-3He Fuel Will Lower Development Costs
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D-3He Fuel Generally Gives
Easier Engineering and Safety
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fraction = 50%

• Reduced neutron flux allows
Smaller radiation shields
Smaller magnets
Permanent first wall and 
shield
Easier maintenance

• Increased charged-particle 
flux allows direct energy 
conversion

• But unburned tritium will be a 
proliferation and safety issue

H L
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Linear Geometry Provides Solution to
Handling Charged-Particle Surface Heat Flux

• Charged-particle power transports from internal plasmoid (in an FRC or 
spheromak) to edge region and then out ends of fusion core.

• Expanded flux tube in end chamber reduces heat and particle fluxes, so charged-
particle transport power only slightly impacts the first wall.

• Mainly bremsstrahlung power contributes to first-wall surface heat.
Relatively small peaking factor along axis for bremsstrahlung and neutrons.

• High power density does not necessarily imply unmanageable first-wall heat flux.

Not to scale
Expanded
flux tube to
reduce
heat flux

FRC core region

Charged particles
BremsstrahlungNeutrons
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Field-Reversed Configuration (FRC)
Would Be Attractive for Fusion Power

• Very high β≡Pplasma/PB-field

• Linear external B field
• Cylindrical geometry
• Requires efficient current drive

AzimuthalAzimuthal
currentcurrent

Magnetic Magnetic 
fieldfield

From Univ. of Washington web page for the Star Thrust Experiment (STX):
www.aa.washington.edu/AERP/RPPL/STX.html
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ARTEMIS Field-Reversed Configuration
(D-3He, Momota, et al., NIFS, 1992)
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The Low Radiation Damage in D-3He Reactors Allows 
Permanent First Walls and Shields to be Designed

“Permanent
life regime 

for steel
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Radioactive Waste Disposal is Much Easier
for D-3He Reactors than for D-T Reactors

Class A

Class C

Deep Geologic Burial

30 full-power years

HT-9
steel

Low-
activation
Tenelon

D-3He D-T
5 full-power years

HT-9
steel

Low-
activation
Tenelon



JFS   2004 Fusion Technology Institute 30

Proliferation-Resistant
D-3He Power Plant May Be Possible

Minimal radiation
shield to reduce

space for D-T
shielding

Superconducting,
high-field magnet

for high fusion
power density

Small plasma
to reduce

space for D-T
shielding

Organic coolant to
make high-flux D-T
operation difficult.

High-β  for high fusion
power density

Direct converter
for increased
electric power
per unit fusion

power

D-3He fuel for
low neutron wall loading

D-3He proton gyroradius 
contributes to stability
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The 3He Fuel Source is an Issue
—So Think Outside the Box

• ~400 kg 3He accessible on Earth 
(~8 GW-a fusion energy for R&D)

• ~109 kg 3He on lunar surface for 
21st century

• ~1023 kg 3He in gas-giant planets 
for indefinite future

• L.J. Wittenberg, 
J.F. Santarius, and 
G.L. Kulcinski, 
“Lunar Source of 
3He for Commercial 
Fusion Power,” 
Fusion Technology
10, 167 (1986).

Escher, Other World, 1947
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Significance of Lunar Helium-3Significance of Lunar Helium-3

1 tonne of He-3 can produce
10,000 MWe-y of electrical energy.
1 tonne of He-3 can produce
10,000 MWe-y of electrical energy.
1 tonne of He-3 can produce
10,000 MWe-y of electrical energy.

40 tonnes of He-3 will provide
for the entire U.S. electricity
consumption in 2000.

40 tonnes of He-3 could provide
for the entire U.S. electricity
consumption in 2004.
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• Helium-3 concentration
verified from  Apollo 11, 12,
14, 15, 16, 17 and U.S.S.R.
Luna 16, 20 samples.

• Helium-3 concentration
verified from  Apollo 11, 12,
14, 15, 16, 17 and U.S.S.R.
Luna 16, 20 samples.

•  Current analyses indicate
that there are at least
1,000,000 tonnes of helium-3
imbedded in the lunar
surface.

•  Current analyses indicate
that there are at least
1,000,000 tonnes of helium-3
embedded in the lunar
surface.

Lunar Helium-3 Is
Well Documented



JFS   2004 Fusion Technology Institute 34

3He Evolution from Lunar Regolith
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He Content Correlates Well with Ti Content
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Measured correlation 
of He and Ti contents

Spectral reflectance map 
of lunar Ti content
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Lunar 3He Mining Produces Other Volatiles
Useful for Sustaining a Lunar Base



JFS   2004 Fusion Technology Institute 37

Lunar 3He Mining Would Use
Well-Developed Terrestrial Technology

~109 kg 3He on 
lunar surface ==> 
~1000 y world 
energy supply• Bucket-wheel 

excavators
• Bulk heating
• Heat pipes
• Conveyor belt
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Earliest D-3He Reactor Design
Was a Fusion Rocket

G.W. Englert,
NASA Glenn Research Center
New Scientist (1962)

“If controlled thermonuclear 
fusion can be used to power 
spacecraft for interplanetary 
flight it will give important 
advantages over chemical or 
nuclear fission rockets.  
The application of 
superconducting magnets and 
a mixture of deuterium and 
helium-3 as fuel appears to be 
the most promising 
arrangement.”
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Conventional Tokamaks Have High Mass
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D-3He Space-Propulsion Tandem Mirror

Tandem mirror
engine

Tandem mirror rocket design 
by UW EMA 569 students

Specific power   1.2 kW/kg
Thrust power      1500 MW
Length                  113 m
Ave. outer radius      1 m
Core B field           6.4 T
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The Dipole Configuration Offers a Relatively Simple Design 
That an MIT/Columbia Team Is Testing

Io plasma torus 
around Jupiter

LDX experiment
(MIT)

0.65 m
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D-3He Fusion Propulsion
Could Provide Flexible Thrust Modes

Fuel Fuel 
plasma plasma 
exhaustexhaust

Thermal Thermal 
exhaustexhaust

MassMass--
augmented augmented 

exhaustexhaust

Pellet 
injection
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Marshall Space Flight Center

Pulsed Fusion Also Holds Promise

• In both cases, 
ionized 
material from 
the fusion 
micro-explosion 
would reflect 
from a 
magnetic field 
to produce 
thrust.

• MTF: magnetized-target fusion
would use a conducting liner to 
implode a magnetized plasmoid.

• ICF: inertial-confinement fusion
would use lasers or ion beams to 
implode a material target.
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Direct Conversion to Electricity Could Take 
Advantage of the Natural Vacuum in Space

Direct converter 
grids and collectors

Faraday 
cage

Magnetic 
field lines

Core 
plasma

Barr-Moir experiment, LLNL
(Fusion Technology, 1973)
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Plasmas Provide
Many Materials Processing Capabilities

• B.J. Eastlund and W.C. Gough, “The Fusion Torch--Closing 
the Cycle from Use to Reuse,” WASH-1132 (US AEC, 1969).
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D-3He Fusion Will Provide Capabilities Not 
Available from Other Propulsion Options
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Fusion Propulsion Would Enable
Attractive Solar-System Travel

• Comparison of trip times and payload fractions for 
chemical and fusion rockets

Fast human transportFast human transport
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Where Do We Go from Here?
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