

IEC Device Core Physics Explorations*

John F. Santarius and Gilbert A. Emmert

Fusion Technology Institute University of Wisconsin

14th US-Japan Workshop on Inertial Electrostatic Confinement Fusion

> University of Maryland October 14-16, 2012

 * Research supported by the US Dept. of Energy under grant DE-FG02-04ER54745
and by the Greatbatch & Grainger Foundations.

- Radial convergence of neutrals and positive ions.
- Positive space-charge near the origin due to converging ions.
- Electrostatic potential confinement of electrons and negative ions.
- Time dependent phenomena related to the filling of the electrostatic potential well by electrons and negative ions.
- Creation of D⁻ and D₂⁻, the latter by electron attachment to excited rotational states of D₂⁰.
- Recombination of electrons and ions within the core region.

JFS & GAE 2012

Early Analyses of IEC Core Convergence Predicted Potential Structures

- R.L. Hirsch, "Inertial-Electrostatic Confinement of Ionized Fusion Gases," *Journal of Applied Physics* 38, 4522 (1967); erratum, 38, 4047 (1968).
- N.A. Krall, "The Polywell[™]: a Spherically Convergent Ion Focus Concept," *Fusion Technology* 22, 42 (1992).

FIG. 1. Potential distribution for $K_{+} = 0.7$ and $\lambda_{+} = \lambda_{+max} = 0.454$ at the real cathode.

Experimental Measurements by Thorson Indicated a Large Central Virtual Anode

- Measurements were made using a double-probe.
- $P = 13 \text{ mPa} (\approx 0.1 \text{ mTorr})$
 - V = 5 kV
 - I = 40 mA

 T.A. Thorson, R.D. Durst, R.J. Fonck, and L.P. Wainwright, "Convergence, Electrostatic Potential, and Density Measurements in a Spherically Convergent Ion Focus," *Physics* of *Plasmas* 4, 4 (1997).

PIC Code Simulation by Tomiyasu Under Different Plasma Conditions Indicated a Small Virtual Anode

- K. Tomiyasu, J.F. Santarius, and G.L. Kulcinski, "Numerical Simulation for UW-IEC Device," 6th US-Japan IEC Workshop (Tokyo Inst. of Tech., Yokohama, 21 Oct 2003).
- Used UC-Berkeley's PDS-1 code, modified by R.A. Nebel and K. Tomiyasu
 - > 1-D radial, 2-D velocity PIC code
 - Additions to Berkeley version
 - Gridded IEC geometry
 - Atomic processes
 - Collisions with neutral gas
 - Reflecting boundary at origin
 - Fusion reactions
 - Secondary electron energy dependence
- Parameters for case at left, shown after steady-state distributions are reached: r_c=0.05 m, r_a=0.25 m P=2 mTorr, V=100 kV, I=5 A

At <<1 A, Typical IEC Device Currents Are Not Space-Charge Limited

- Child-Langmuir (space-charge included) nearly equals vacuum electrostatic potential profiles at low current.
- Parameters for plot below: $r_a / r_c = 5$, I = 10 mA
- Gil Emmert, "Child-Langmuir Limited Current and Potential Profile in Spherical Gridded IEC Devices," UW FTI Internal Design Memo (15 May 2006).

• Child-Langmuir current limit appears in the plot below for one typical IEC case.

• Space-charge effects become more important at low perveance $\equiv I / V^{3/2}$.

JFS & GAE 2012

Ion Space Charge Inside a Gridded IEC Device's Cathode Will Always Create a Potential Well for Negative Particles

THE UNIVERSITY

- Plot at left (David R. Boris, UW PhD Thesis, 2009) shows the vacuum electrostatic potential created by discrete wires in cylindrical geometry:
 - Channels formed between grid wires, and
 - Potential peak near origin due to converging ion space charge.
- Spherical geometry will lead to a 3D well that is more difficult to illustrate.
- Plot at left (Eric C. Alderson, UW PhD Thesis, 2012) shows a midplane cut of the vacuum electrostatic potential for an IEC cathode and anode with all longitude wires included plus the two latitude wires above and below the equator.

- The so-called *Pastukhov problem* has been analyzed in depth:
 - > VP Pastukhov; RH Cohen, et al.; F Najmabadi, et al.; VN Khudik
 - See Bibliography slide at end of talk.
- Nominally applicable to $\Phi >> T$, but the analysis works reasonably well for $\Phi \sim T$, however we need the solution for B = 0.

Velocity Space for Confining $\Delta \Phi > T_i$

Problem of Calculating the Loss of Electrons Trapped *only* by an Electrostatic Potential Has Been Solved

 V.N. Khudik, "Longitudinal Losses of Electrostatically Confined Particles from a Mirror Device with Arbitrary Mirror Ratio," *Nuclear Fusion* 37, 189 (1997).

$$J_{e} \equiv \frac{n_{e}^{2}}{(n\tau)_{e}} = \frac{4}{\sqrt{\pi}} \frac{n_{e}}{\tau_{e}} e^{-e\Phi/T_{e}}$$
$$\tau_{e} \equiv \sqrt{\frac{m_{e}}{2}} \frac{T_{e}^{3/2}}{\pi n e^{4} \Lambda}$$
$$\implies (n\tau)_{e} = \sqrt{\frac{\pi}{4}} n_{e} \tau_{e} e^{e\Phi/T_{e}}$$

• Earlier solutions (Yushmanov?) are rumored to exist, but I have not yet tracked these down.

• In general, time dependent equations must be solved for electron and negative ion input current (sources of secondary and ionization electrons plus negative ions) vs. loss:

$$I_{-} \equiv I_{se} + I_{iz} + I_{i-}$$

If electrons only:

$$\int_{\text{well}} \frac{\mathrm{d} n_{e}}{\mathrm{d} t} \, \mathrm{d}^{3} r = \mathbf{I}_{e} - \int_{\text{well}} \frac{n_{e}}{\tau_{e}} \, \mathrm{d}^{3} r$$

Electrons plus negative ions:

$$\int_{\text{well}} \frac{d \left(n_e + n_{i-}\right)}{d t} d^3 r = I_e - \int_{\text{well}} \frac{n_e}{\tau_e} d^3 r - \int_{\text{well}} \frac{n_{i-}}{\tau_{i-}} d^3 r$$

• The detailed potential well structure will be difficult to calculate, but reasonable estimates of well's volume and the trapped distribution functions should be feasible.

JFS & GAE 2012

Negative Ions Slightly Complicate the Problem

Slide modified from Eric Alderson's 2011 US-Japan IEC Workshop talk; see also D.R. Boris, E. Alderson, G. Becerra, et al., "Deuterium Anions in Inertial Electrostatic Confinement Devices," Physical Review E 80, 036408 (2009).

THE UNIVERSIT

Sample Case Input Parameters

Cathode Radius	0.10 m	
Anode Radius	0.20 m	
Wall Radius	0.45 m	
Cathode Voltage	70 kV	
Potential Model: vacuum potential		
No cold ions in cathode region		
Source ion fractions:		
D+ 0.06		
D2+ 0.23		
D3+ 0.71		

Cathode Current	30 mA	
Gas pressure	2 mTorr	
Ion energy at anode	0.01 keV	
Gas density 6	.400e+19 m^-3	
Cathode transparenc	y 0.92	
Anode transparency	1.00	
Number of zones:		
Intergrid regio	n 100	
Cathode region	30	
Source region	30	
Energy grid	30	

- Secondary electrons
 - > I_{se}=17.7 mA
- Ionization electrons
 - Jons from ionization events in the core are assumed for this case to recombine with electrons in the core, making the net contribution of core electrons from ionization events negligible.
 - > $I_{iz} = 0 \text{ mA}$
- Negative ions
 - Based on the theory and VICTER implementation discussed by Gil Emmert and Eric Alderson at the previous US-Japan IEC Workshop:
 - ≻ I_{i-}=2.4 mA
- Net negative particle creation rate in the IEC core
 - \succ I_{net} ~ 20 mA

- Positive ions will create a space-charge well in the interior of the cathode region. Questions remain:
 - > How deep will the well be for given plasma parameters?
 - At what rate will the well be filled with electrons and negative ions?
 - Will the electron and negative ion populations reach a steadystate balance between creation and loss, or will the negative populations oscillate in density?
 - > What will be the detailed shape of the well?
- Stay tuned.

JFS & GAE 2012

Bibliography

- R.L. Hirsch, "Inertial-Electrostatic Confinement of Ionized Fusion Gases," *Journal of Applied Physics* 38, 4522 (1967).
- N.A. Krall, "The Polywell[™]: a Spherically Convergent Ion Focus Concept," *Fusion Technology* 22, 42 (1992).
- 3. T.A. Thorson, R.D. Durst, R.J. Fonck, and L.P. Wainwright, "Convergence, Electrostatic Potential, and Density Measurements in a Spherically Convergent Ion Focus," *Physics of Plasmas* **4**, 4 (1997).
- 4. K. Tomiyasu, J.F. Santarius, and G.L. Kulcinski, "Numerical Simulation for UW-IEC Device," 6th US-Japan IEC Workshop (Tokyo Inst. of Tech., Yokohama, 21 Oct 2003).
- V.P. Pastukhov, "Collisional Losses of Electrons from an Adiabatic Trap in a Plasma with a Positive Potential," *Nuclear Fusion* 14, 3 (1974)
- 6. R.H. Cohen, et al., "Collisional Loss of Electrostatically Confined Species in a Magnetic Mirror," *Nuclear Fusion* **18**, 1229 (1978)
- F. Najmabadi, et al., "Collisional End Loss of Electrostatically Confined Particles in a Magnetic Mirror Field," *Nuclear Fusion* 24, 75 (1984)
- 8. V.N. Khudik, "Longitudinal Losses of Electrostatically Confined Particles from a Mirror Device with Arbitrary Mirror Ratio," *Nuclear Fusion* **37**, 189 (1997).

JFS & GAE 2012