

Exploration of IEC Device Operating Regimes*

John F. Santarius and Gilbert A. Emmert

Fusion Technology Institute University of Wisconsin

12th US-Japan Workshop on Inertial Electrostatic Confinement Fusion

> Osaka, Japan October 20-21, 2010

* Research supported by the US Dept. of Energy under grant DE-FG02-04ER54745.

Outline

• Key physics effects for a selected (base) case

• Exploration of parametric dependencies

• Future directions

Summary and Conclusions

How IEC Theory Code Modeling Works

$$S_{i}(r) = A_{i}(r) + \sum_{j=1}^{2} \int_{r}^{\text{anode}} K_{ij}(r, r') S_{j}(r') dr', \quad i = 1, 2$$

It's Turtles (= current) All the Way Down!

JFS & GAE 2010

Base Case Input Parameters

Cathode	Radius	0.100	m	
Anode Radius		0.250	m	
Wall Radius		0.456	m	
Cathode	Voltage	300	kV	
Potential Model vacuum potential				
No cold ions in cathode region				
Source ion fractions:				
D+	0.060			
D2+	0.230			
D3+	0.710			

Cathode Current	100 mA		
Gas pressure	2 mTorr		
Ion energy at anode	0.01 keV		
Gas density 6.4	400e+19 m^-3		
Cathode transparency	0.95		
Anode transparency	1.00		
Number of zones:			
Intergrid region	100		
Cathode region	50		
Source region	50		
Energy grid	50		

100 kV, 100 mA, P=2 mTorr, rc=0.1 m, ra=0.25 m, source $D^+:D_2^+:D_3^+=0.06:0.23:0.71$

JFS & GAE 2010

Neutrals Show Analogous Effects

100 kV, 100 mA, P=2 mTorr, rc=0.1 m, ra=0.25 m, source D⁺:D₂⁺:D₃⁺=0.06:0.23:0.71

Higher Background Gas Pressure Increases Neutron Production Strongly

• Note: filament-assisted discharge; model is not valid for a glow discharge.

100 kV, 100 mA, r_c=0.1 m, r_a=0.25 m, Source: 0.06 D⁺, 0.23 D₂⁺, 0.71 D₃⁺

At Low Pressure, Atomic Physics Effects Are Relatively Small

100 kV, 100 mA, r_c =0.10 m, r_a =0.25 m, Source: 0.06 D⁺, 0.23 D₂⁺, 0.71 D₃⁺

At Higher Pressure, Atomic Physics Effects Are Strong

100 kV, 100 mA, r_c =0.10 m, r_a =0.25 m, Source: 0.06 D⁺, 0.23 D₂⁺, 0.71 D₃⁺

D-D Performs Better at Larger Radii for Constant Cathode-Anode Spacing

100 kV, 100 mA, P=2 mTorr, Source: 0.06 D⁺, 0.23 D₂⁺, 0.71 D₃⁺

D–D neutron production ($10^8 s^{-1}$)

JFS & GAE 2010

Fusion Technology Institute, University of Wisconsin

Parameters Scale Linearly with Ion Current

100 kV, 2 mTorr, r_c =0.10 m, r_a =0.25 m, Source: 0.06 D⁺, 0.23 D₂⁺, 0.71 D₃⁺

- Ion-impact ionization increases slightly in the cathode region.
- Note: the analysis does not include core space-charge effects. JFS & GAE 2010 Fusion Technology Institute, University of Wisconsin

Higher Voltage and Pressure Increase Neutron Production Strongly

100 mA, $r_c=0.1$ m, $r_a=0.25$ m, Source: 0.06 D⁺, 0.23 D₂⁺, 0.71 D₃⁺

Fusion Technology Institute, University of Wisconsin

- Funded tasks during present 3-year DOE theory grant
 - implement planar and cylindrical geometries,
 - ▹ include D-T fuel and the He⁺⁺ ionization state,
 - Further benchmark against experimental data, and
 - > scope space-charge effects of converging ions in core.
- Other tasks
 - > add negative ions (Eric Alderson),
 - > include D-³He and p-¹¹B fuels,
 - refine cross section data,
 - > allow a glow discharge ion source distribution,
 - implement electrons as a separate species, and
 - > optimize the configuration and plasma parameters

Summary and Conclusions

- UW's integral equation code now creates files with detailed output for all species as functions of r and E.
- We have developed a reasonable understanding of the key active processes in moderate pressure (0.1-5 mTorr) plasmas.
 - > Caveat: negative ions remain to be implemented.
- The integral equation code predicts that the neutron production rate depends:
 - > strongly on voltage and pressure,
 - > moderately on anode radius and current, and
 - > very little on cathode radius.

JFS & GAE 2010