

Theoretical Exploration of Some Issues Affecting IEC Fusion Rates

John F. Santarius and Gilbert A. Emmert UW Fusion Technology Institute

> US-Japan IEC Workshop Argonne National Laboratory May 22-24, 2007

- Examine effect of voltage and background gas pressure on ion and fast neutral energy distributions.
- Investigate the effect of molecular species mix in the source region on the D-D neutron production rate.
- Extrapolate the D-T neutron production rate from D-D IEC parameters.

- Examine effect of voltage and background gas pressure on ion and fast neutral energy distributions.
- Investigate the effect of molecular species mix in the source region on the D-D neutron production rate.
- Extrapolate the D-T neutron production rate from D-D IEC parameters.

Increasing Neutral Gas Pressure Softens the Ion and Charge-Exchange Neutral Energy Spectra

100 kV, 60 mA, r_c =0.05 m, r_a =0.25 m, Source: 0.1 D⁺, 0.1 D₂⁺, 0.8 D₃⁺

1 mtorr (0.13 Pa)

10 mtorr (1.3 Pa)

• Note: D_3^+ point is in total ions per second, not per second per keV.

JFS / GAE 2007

Increasing Voltage Increases Neutron Production Rate and Affects the Origin of the Fusion Neutrons

2 mtorr (0.27 Pa), 60 mA, r_c =0.05 m, r_a =0.25 m, Source: 0.1 D⁺, 0.1 D₂⁺, 0.8 D₃⁺

⁺ "Neutrals" means the fast neutrals from charge-exchange or dissociation collisions.

Units of 10 ⁷ n/s	50 kV	100 kV	150 kV
D+ Neutrals [†] - Gas	0.84	1.54	2.04
D ₂ ⁺ Neutrals [†] - Gas	0.47	1.24	2.27
D ₃ ⁺ Neutrals [†] - Gas	5.78	5.11	5.31
D+ - Gas	0.22	0.91	1.98
D ₂ + - Gas	0.09	0.54	1.36
D ₃ + - Gas	0.14	0.66	1.28
Total neutrons	7.54	10.0	14.2

JFS / GAE 2007

- Examine effect of voltage and background gas pressure on ion and fast neutral energy distributions.
- Investigate the effect of molecular species mix in the source region on the D-D neutron production rate.
- Extrapolate the D-T neutron production rate from D-D IEC parameters.

Increasing the Voltage Increases Neutron Production and Changes the Optimal Species Mix

Source D⁺ Gives a Faster Ion Spectrum than D_3^+ , but the same neutron production rate

All D⁺ in Source: 1.0x10⁸ n/s

100 kV, 60 mA, 2 mtorr (0.27 Pa), r_c =0.05 m, r_a =0.25 m

All D_3^+ in Source: 1.0x10⁸ n/s

Note: D₃⁺ point is in total ions per second, not per second per keV.
JFS/GAE 2007 Fusion Technology Institute

Source D₂⁺ Quickly Produces D⁺ for the 100 kV, 60 mA, 2 mtorr Case

100 kV, 60 mA, 2 mtorr (0.27 Pa), r_c =0.05 m, r_a =0.25 m

All D_3^+ in Source: 1.0x10⁸ n/s

All D_2^+ in Source: 8.0x10⁷ n/s

Note: D₃⁺ point is in total ions per second, not per second per keV.
JFS/GAE 2007 Fusion Technology Institute

The Origin of the Fusion Neutrons Depends Strongly on the Molecular Species Mix in the Source Region

100 kV, 2 mtorr (0.27 Pa), 60 mA, r_c =0.05 m, r_a =0.25 m

[†] "Neutrals" means the fast neutrals from charge-exchange or dissociation collisions.

Units of 10 ⁷ n/s	D ⁺ Source	D ₂ ⁺ Source	D ₃ ⁺ Source
D+ Neutrals [†] - Gas	6.2	0.9	1.0
D ₂ ⁺ Neutrals [†] - Gas	1.6	4.9	0.7
D ₃ ⁺ Neutrals [†] - Gas	0	0	6.6
D+ - Gas	1.6	0.8	0.8
D ₂ + - Gas	0.9	1.4	0.4
D ₃ + - Gas	0	0	0.9
Total neutrons	10.3	8.0	10.3

- Examine effect of voltage and background gas pressure on ion and fast neutral energy distributions.
- Investigate the effect of molecular species mix in the source region on the D-D neutron production rate.

• Extrapolate the D-T neutron production rate from D-D IEC parameters.

Ratio of D-T to D-D($n+^{3}He$) Fusion Cross Sections Depends on Energy and Which Species is the Projectile THE UNIVERSITY

MADISO

The D-T to D-D Neutron Production Rate Ratio Ranges from 50 to 120, Depending on Projectile Energy

- Define total fast neutral or ion density = n_{if} and total target neutral density = n_{it} .
- In a D-D plasma, the fusion rate for $D+D => n+^{3}He$ is $\Gamma_{DDn3} = n_{if}n_{it} < \sigma v >_{DDn3}$ where $< \sigma v >_{ij}$ means projectile species *i* colliding with background species *j*.
- In a D-T plasma, each species has half of its D-D density and the fusion rate for D+T => n+⁴He is
 Σ = ¼ n n (< σy> + < σy>)

 $\Gamma_{\rm DT} = \frac{1}{4} n_{\rm if} n_{\rm it} (\langle \sigma v \rangle_{\rm DT} + \langle \sigma v \rangle_{\rm TD})$

• Therefore, the ratio of D-T to D-D neutron production rate is

$$R = \frac{\langle \sigma v \rangle_{DT} + \langle \sigma v \rangle_{TD}}{4 \langle \sigma v \rangle_{DDn3}}$$

Weighting of D-T vs D-D Projectiles

JFS / GAE 2007

Reference Case Increase for Replacing D-D by D-T is Factor of 83

100 kV, 60 mA, 2 mtorr (0.27 Pa), r_c =0.05 m, r_a =0.25 m, Source: 0.1 D⁺, 0.1 D₂⁺, 0.8 D₃⁺

• The ion energy spectra at the cathode are translated into energy per nucleon:

- The ion and fast charge-exchange neutral nucleon distributions are weighted with the energy distributions and D-T:D-D fusion cross section ratios.
- Total weighting equation becomes

$$X = (f_{ion} \cdot w_{\sigma}) \frac{\dot{N}_{ion}^{DD}}{\dot{N}_{total}^{DD}} + (f_{neutral} \cdot w_{\sigma}) \frac{\dot{N}_{neutral}^{DD}}{\dot{N}_{total}^{DD}}$$

JFS / GAE 2007

- For the parameter regimes investigated so far:
 - Increasing the neutral gas pressure softens the ion and chargeexchange neutral energy spectra, leading to an optimal background gas pressure.
 - Increasing the voltage increases the neutron production rate and increases the importance of reactions related to D+ and D2+.
 - > The molecular species mix in the source region alters the ion spectra inside the anode, but the neutron production rate varies only slightly.
- Replacing D fuel by a D-T 50:50 mix should lead to D-T fusion neutron production rates ~80 times higher than the D-D rates.
 - > Optimized parameters may increase this ratio slightly.

JFS / GAE 2007