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D-3He Fuel Burns Less Easily than D-T Fuel,
So It Faces Larger Physics Obstacles,
Making It a Second Generation Fuel in Many People’s Minds

First generation:
D+ T — n (14.07 MeV) + “He (3.52 MeV)
D+ D — n (2.45 MeV) +3He (0.82 MeV) {50%}
— p (3.02MeV) + T (1.01 MeV) {50%}
Second generation:
D + *He — p (14.68 MeV) + “He (3.67 MeV)

Third generation:

p+ !B — 3 ‘He (8.68 MeV)

Fusion cross sections averaged

Ignition contours

over a Maxwellian distribution against bremsstrahlung
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SHe Resources Are an Issue: Earth Contains SHe Sufficient Only for an
Engineering Test Program, but Well-Developed Terrestrial Technology
Gives Access to ~10° kg of Lunar 3He
1I-{Ie;l;(; Regolith to Extract

\ SHe and other volatiles

Helium-3 Evolution from Lunar Regolith
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Process for Extracting Helium-3 from Lunar Regolith

Spectral reflectance map
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Overview:

This poster explains why D-’He fusion fuel is not more popular than D-T fuel (physics),

and why it should be (engineering and safety)!

D-3He Fuel Leads to Lower Fusion Power Density, but This
Can Be Overcome by Higher Magnetic Fields and “Beta”

® D-T fueled innovative

D-3He Fuel Lowers Neutron Production and
Gives Easier Engineering and Safety

D-’He Fusion: Physics, Engineering, and Applications

John F. Santarius, Fusion Technology Institute, University of Wisconsin

D-’He May Find Many Uses. Some of
Them, Discussed Here, Are:

® Radioisotope production

® Electricity production

> Potentially proliferation-proof

® Space propulsion

Neutron power fraction

Radioisotope Production
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»D-T fueled FRC’s (B ~85%)
optimize at B<3 T.

® D-3He needs a factor of ~80

above D-T fusion power

lon temperature (keV)

Power Density Relative to a

.. D-T RRC with 5=85%and B=3 T
densities.

»Superconducting magnets
can reach at least 20 T.

»Fusion power density
scales as 3> B*.

»Potential power-density

improvement by
increasing 3 and B-field

appears at right.
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Radioactive Waste Disposal is
Much Easier for D-He
Reactors than for D-T Reactors
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High Heat Fluxes in D-3He Reactors Stem D-’He D-T
from High Power Density, but Are Manageable 30 full-power years 5 full-power years
® Charged-particle power transports from internal plasmoid (in - Class A =
an FRC or spheromak) to edge region and then out ends of / _
fusion core. Low- —— i
® Expanded flux tube in end chamber reduces heat and particle / activation
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® Mainly bremsstrahlung power contributes to first-wall surface

heat, giving a relatively small peaking factor along the axis.
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® Reduced neutron flux allows
>Smaller radiation shields,
»Smaller magnets,

»Permanent first wall and
shield, and

»Easier maintenance.

® Increased charged-particle flux
allows direct energy conversion

of fusion energy to electricity.

activation of materials and

radiation damage to them.

/

devices might be placed in a

hospital wing.or on mobile

units.
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Momota, et al. (1992)

National Institute of Fusion Science, Japan

® Smaller neutron flux reduces

Proliferation-Proof Fusion Electric Power

Low neutron wall loading Minimal radiation

shield to reduce
space for D-T
shielding

High- for high fusion
power density

Direct converter
for increased
electric power
per unit fusion
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power

_ Small plasma Superconducting,

Organlq coolant to to reduce high-field magnet
make high-flux D-T space for D-T for high fusion
operation difficult. shielding power density

Efficient Long-Range Space Propulsion

®Fusion Would Provide Capabilities Not Available from Other Propulsion Options

Fast human transport Efficient cargo transport

High specific power at
high exhaust velocity
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® Rocket design from Univ. of Washington web page for the Star Thrust Experiment (STX): www.aa.washington.edu/AERP/RPPL/STX.html




