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“Advanced” Fusion Fuels
Greatly Reduce Neutron Production

1st generation fuels:

D + T → n (14.07 MeV) + 4He (3.52 MeV)

D + D → n (2.45 MeV) + 3He (0.82 MeV)
→ p (3.02 MeV) + T (1.01 MeV)

{50% each channel}

2nd generation fuel:

D + 3He → p (14.68 MeV) + 4He (3.67 MeV)

3rd generation fuels:

3He + 3He → 2 p + 4He (12.86 MeV)

p + 11B → 3  4He (8.68 MeV)
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D-3He Fuel Faces
Larger Physics Obstacles than D-T

• D-3He, compared to D-T, 
requires:

Minimum factor of ~6 
increase in ignition 
temperature,
Minimum factor of ~8 neτΕ

increase,
Minimum Tnτ increase of 
~50 times.

• D-3He fusion relies on 
significant continued 
progress in plasma physics.
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Burning D-D Fuel without Burning the Tritium 
Produced by D-D Reactions Would Be Difficult

• D-D reaction-product burnup based on Wildcat D-D tokamak reactor 
parameters.

• If feasible, would greatly reduce D-3He neutron production.
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D-3He Could Have a Power Density
at Least as High as D-T Power Density

PowerDensity Relative to a
D-TFRC with b=85%and B=3 T
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• D-T fueled innovative concepts become limited by neutron wall loads or surface 
heat loads well before they reach β, B-field, or magnet limits.

• D-T fueled FRC’s (β~85%) optimize at B ≤ 3 T.

• Fusion power density scales as β2 B4.

• Superconducting magnets can reach at least 20 T.
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D-3He Fuel Generally Gives
Easier Engineering and Safety
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• Reduced neutron flux allows
Smaller radiation shields
Smaller magnets
Permanent first wall and 
shield
Easier maintenance

• Increased charged-particle flux 
allows direct energy conversion

• Unburned tritium will be a 
proliferation and safety issue H L
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Linear Geometry Provides Solution to
Handling Charged-Particle Surface Heat Flux

• High power density does not necessarily imply unmanageable first-wall heat flux.
• Charged-particle power transports from internal plasmoid (in an FRC or 

spheromak) to edge region and then out ends of fusion core.
• Expanded flux tube in end chamber reduces heat and particle fluxes.
• Mainly bremsstrahlung power contributes to first-wall surface heat.
• Relatively small peaking factor along axis for bremsstrahlung and neutrons.

Not to scale
Expanded
flux tube to
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Direct Conversion to Electricity
Can Give 60-80% Efficiency

• Experiment and theory agreed within 2%.

Barr-Moir experiment, LLNL
(Fusion Technology, 1973)
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The Low Radiation Damage in D-3He Reactors Allows 
Permanent First Walls and Shields to be Designed
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Radioactive Waste Disposal is Much Easier
for D-3He Reactors than for D-T Reactors

Class A
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The 3He Fuel Source is an Issue
—So Think Outside the Box

• ~400 kg 3He accessible on 
Earth (~8 GW-a fusion 
energy for R&D)

• ~109 kg 3He on lunar 
surface for 21st century

• ~1023 kg 3He in gas-giant 
planets for indefinite future

Escher, Other World, 1947
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Lunar 3He Mining Would Use
Well-Developed Terrestrial Technology

~400 kg 3He 
accessible on 
Earth ==>
~8 GW-y fusion 
energy for R&D

~109 kg 3He on 
lunar surface ==> 
~1000 y world 
energy supply

• Bucket-wheel 
excavators

• Bulk heating
• Heat pipes
• Conveyor belt
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Mining Other Volatiles Would Support a Lunar Initiative, 
Allowing a Symbiotic Demonstration of Lunar 3He Acquisition
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Proliferation-Resistant
D-3He Power Plant May Be Possible

Minimal radiation
shield to reduce

space for D-T
shielding

Superconducting,
high-field magnet

for high fusion
power density

Small plasma
to reduce

space for D-T
shielding

Organic coolant to
make high-flux D-T
operation difficult.

High-β  for high fusion
power density

Direct converter
for increased
electric power
per unit fusion

power

D-3He fuel for
low neutron wall loading

D-3He proton gyroradius 
contributes to stability



 

It May be Possible to Efficiently Burn DD or D3He 
Fuels in Fast-Ignited ICF Targets  

 

 
 
 
 
 
 
 
 
 
 
 
 
‡ Four unique aspects of ICF for advanced fuels: 

 
 

(1) The required high ignition/burn temperatures (~30/150keV) can be obtained via 
a precursor DT ignitor region (~10/50keV). 

 
 

(2) The larger driver energies (required by the larger rho-R’s for efficient advanced 
fuel burn-up) can be offset through fast ignition. 

 
 

(3) Bremsstrahlung is self-trapped in the compressed fuel 
 
 

(4) Tritium for the DT ignitor (~1% inventory) is self-bred as the main fuel burns 
 
 

Fast ignition laser Slow compression driver  
– Laser or HI beams or Z-pinch,….

DT ignitor

DD or D3He main fuel 

Cone focus 
hohlraum 

Energy spectrum convertor

Schematic – not to scale 

• Viewgraph contributed by John Perkins, LLNL.



JFS   2004 Fusion Technology Institute 17

Could D-3He Be Used in Magnetized-Target Fusion?

• Investigation in progress.

0 0.2 0.4 0.6 0.8 1
Time ms

0

0.01

0.02

0.03

0.04

0.05

enoZ
suidar

HmL

mt=1mg, Dt=5.0cm
mj=0.2 g, Dj=2.4 cm
mb=2.0 g,Db=22.1 cm
B0=2T, vj=262kmês, vb=262 kmês

H L



JFS   2004 Fusion Technology Institute 18

D-3He Fusion Protons Can Produce
Useful Radioisotopes

Cross sections for producing the
PET-scan isotope 13N

• In inertial-electrostatic confinement (IEC) fusion, high voltages on 
spherically symmetric, semi-transparent grids radially accelerate and 
focus ions.

• UW IEC experiments have achieved 180 kV accelerating potentials,
steady-state D-3He fusion, and proof-of-principle 13N production.

• The glowing cathode shown here is 10 cm in diameter
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Conclusions

• Burning D-3He fuel requires substantial, continued progress 
in plasma physics and high-β concepts.

• 3He fuel for this century must come from the Moon, but 
long-term 3He resources are essentially inexhaustible.

• Potential ICF and MTF D-3He options should be explored.

• Near-term D-3He applications are already being developed.

• The attractiveness of D-3He fusion's engineering, safety, and 
environmental characteristics makes this a potentially 
important research area.


	D-3He Physics andFusion Energy Prospects
	Outline: D-3He Issues
	“Advanced” Fusion FuelsGreatly Reduce Neutron Production
	D-3He Fuel FacesLarger Physics Obstacles than D-T
	Burning D-D Fuel without Burning the Tritium Produced by D-D Reactions Would Be Difficult
	D-3He Could Have a Power Densityat Least as High as D-T Power Density
	D-3He Fuel Generally GivesEasier Engineering and Safety
	Linear Geometry Provides Solution toHandling Charged-Particle Surface Heat Flux
	Direct Conversion to ElectricityCan Give 60-80% Efficiency
	The Low Radiation Damage in D-3He Reactors Allows Permanent First Walls and Shields to be Designed
	Radioactive Waste Disposal is Much Easierfor D-3He Reactors than for D-T Reactors
	The 3He Fuel Source is an Issue—So Think Outside the Box
	Lunar 3He Mining Would UseWell-Developed Terrestrial Technology
	Mining Other Volatiles Would Support a Lunar Initiative, Allowing a Symbiotic Demonstration of Lunar 3He Acquisition
	Proliferation-ResistantD-3He Power Plant May Be Possible
	Could D-3He Be Used in Magnetized-Target Fusion?
	D-3He Fusion Protons Can ProduceUseful Radioisotopes
	Conclusions

