

Overview of University of Wisconsin Inertial-Electrostatic Confinement (IEC) Research*

John Santarius, Gilbert Emmert, Gerald Kulcinski, Richard Bonomo, Eric Alderson, Gabriel Becerra, Lauren Garrison, Karla Hall, Aaron McEvoy, Matthew Michalak, and Craig Schuff

> Fusion Technology Institute Engineering Physics Department

APS Division of Plasma Physics Meeting Providence, Rhode Island October 28–November 2, 2012

santarius@engr.wisc.edu

Present UW IEC Lab Topics of Investigation

Topic	
Basic IEC physics	5-8
IEC diagnostics	9-11
Negative ions	
Integral equation IEC theory	
Helicon ion source and ³ He- ³ He fusion	
Six ion gun beam convergence experiments	
Hot materials irradiation experiments	
Clandestine materials detection	
Radioisotope production	

University of Wisconsin IEC Team

Applications of IEC Device Fusion-Product Neutrons and Protons

- Near Term (Q \ll 1)
 - Detection of highly enriched uranium (HEU) and special nuclear materials (SNM)
 - > Detection of chemical explosives
 - Landmines
 - Improvised explosive devices (IEDs)
 - > Detection of chemical wastes

• Mid Term

- (Q ~ 1)
- Destruction of radioactive wastes
- Destruction of fissile material

UW Gridded

- Long Term (Q >> 1)
 - Small (~100 MWe) power plants
 - > Quiet shipboard propulsion
 - > Space power and propulsion
 - > Base load electrical power plants
 - > Hydrogen production
 - > Synthetic fuel production

R.W. Bussard Polywell[™] 2006 International Astronautical Congress

JFS 2012

Gridded IEC Concept: a Large Voltage Difference between Nearly Transparent Grids Accelerates Ions through a Background Gas

 At ~0.25 Pa (~2 mTorr) typical operation, most fusion reactions occur due to fast ions and neutrals interacting with cold background gas.

Four IEC Chambers Presently Operate at UW

HOMER

JFS 2012

HELIOS & helicon ion source

UW's New Power Supply Will Increase Fusion Product Production Rates and Expand IEC Parameter Regimes

PHOENIX NUCLEAR LABS ROVIDING NUCLEAR TECHNOLOGY FOR THE BETTERMENT OF HUMANITY info@phoenixnuclearlabs.com 608-210-3060

This Phoenix Nuclear Labs power supply provides 300 kV at 200 mA with sophisticated arc protection control. UW designed and constructed high-voltage switch for changing connections between power supply and IEC devices quickly

System of power supply, switch, and IEC devices being connected and tested for operation in 2012

JFS 2012

IEC Devices Can Achieve High Voltages, Facilitating Use of Advanced Fusion Fuels

UW PhD Student Dave Boris Led the Development of the FIDO Charged-Particle Detection System

- <u>Fusion Ion Doppler shift diagnostic (FIDO) bends</u> charged particles into a Si proton detector.
- Greatly reduces bremsstrahlung x-ray noise.
- Works for fusion products and positive or negative ions.

FIDO diagnostic schematic

• D.R. Boris, G.L. Kulcinski, J.F. Santarius, D.C. Donovan, and G.R. Piefer, "Measuring D(d,p)T Fusion Reactant Energy Spectra with Doppler Shifted Fusion Products," *Journal of Applied Physics* **107**, 123305 (2010).

FIDO Bending Arm Allows both Protons and Tritons to be Detected

Raw Data from Charged Particle Detector (60kV 45mA 1.5mtorr)

Fusion Technology Institute, University of Wisconsin

<u>Time Of Flight (TOF) Diagnostic</u> Uses Two FIDO Arms

- TOF concept proposed by Greg Piefer and Dave Boris (2007)
- Implemented by Dave Boris and David Donovan (2008).
- Presently being refined by Aaron McEvoy.
- Allows identification of reacting ion location to ~2 cm.

Negative Ions Complicate the Problem, but Are Typically a Small Fraction of the Total Ions

Slide modified from Eric Alderson's 2011 US-Japan IEC Workshop talk; see also D.R. Boris, E. Alderson, G. Becerra, et al., "Deuterium Anions in Inertial Electrostatic Confinement Devices," Physical Review E 80, 036408 (2009).

THE UNIVERSIT

Measurements of Negative Ion Azimuthal Profiles Show Peaking at Jet Locations

From Eric Alderson, *Experimental and Theoretical Characterization of Negative Deuterium Ion Distributions in a Gridded Inertial-Electrostatic Confinement Device*, UW PhD Thesis (2012).

THE UNIVERSITY

MADISO

JFS 2012

UW's Volterra Integral Code for Transport in Electrostatic Reactors (VICTER) Models Multiple Ion & Neutral Species

Example: f(r,E) for D+ lons Traveling Inward

Key Equations of VICTER and Comparison to Experiment

- Coupled integral equations model multiple ion passes
- > Attenuation function = g(r, r') $g(r,r') = \exp\left\{-\int_{r}^{r'} n_{g} \sigma_{cx} [E(r'')] dr''\right\}$ gas density charge exchange cross-section
- > Cold ion source function = S(r)
- > Cold ions from source region=A(r)
- Sum over all generations of cold ions and all ion passes:

$$S(r) = A(r) + \int_{r}^{\text{anode}} K(r, r') S(r') dr$$

Kernel K_{ij}(r, r') propagates ion source at r' to r: that is, S(r') to S(r):

 Refs: G.A. Emmert and J.F. Santarius, "Atomic and Molecular Effects on Spherically Convergent Ion Flow I: Single Atomic Species" & "II: Multiple Molecular Species," *Physics of Plasmas* 17, 013502 & 013503 (2010).

Maintaining High Helium Ion Energy Requires Operating at Low Pressures (< 0.1 mTorr)

Helicon Ion Source Operating with UW's Spherical IEC Chamber

- Figures courtesy of Gabriel Becerra.
- See G.E. Becerra poster TP8 105, this session, for more information.

³He(³He,2p)⁴He Fusion Reactions Have Been Measured in a Fusion Device at UW-Madison

SIGFE Converges Six Focused Ion Beams into Center of Device

- SIGFE operates at a lower chamber pressure than many gridded IEC devices, as low as 10 mPa (75 µTorr)
- Variable beam focus

- Potential IEC operating modes
 - Beam-background
 - > Beam-embedded
 - Converged core
 - Multiple virtual electrodes (Poissors)

JFS 2012

Fusion Technology Institute, University of Wisconsin

3

18

SIGFE's Neutron Rate vs. Pressure Differs from Gridded IEC Devices for Some Parameter Regimes

- 100% is ideal focus;
 130% focuses at midplane.
- Neutron production rates in experiments on ideally focused SIGFE depend little on pressure.
- Neutron rates in UW gridded devices for an over-focused SIGFE are proportional to pressure.
- SIGFE's, as well as Hirsch's, experimental neutron rates scale inversely with pressure when under-focused

Materials Irradiation Test Facility MITE-E

← Uses Brian Egle SIGFE prototype ion gun.

Pyrometer

Fast He Ions Can Produce Significant Damage in Hot Materials

• Concerns exist for MFE divertor plates plus MFE and IFE first walls.

- Sam Zenobia, Lauren Garrison, and Gerald Kulcinski, "The Response of Polycrystalline Tungsten to 30 keV Helium Ion Implantation at High Temperatures and Its Dependence on the Angle of Incidence," *Journal of Nuclear Materials* 425, 83 (2012); Sam Zenobia, UW PhD thesis (2010).
- Present PhD students Lauren Garrison and Karla Hall are pursuing related research.

IEC Neutron Sources Facilitate Detection of Highly Enriched Uranium (HEU) and Special Nuclear Material (SNM)

Ross Radel, Detection of Highly Enriched Uranium and Tungsten Surface Damage Studies Using a Pulsed Inertial Electrostatic Confinement Fusion Device, UW PhD thesis (2007).

Fusion Technology Institute, University of Wisconsin

IEC Neutron Sources Facilitate Detection of Chemical Explosives

Alex Wehmeyer, *The Detection of Explosives Using an Inertial Electrostatic Confinement D-D Fusion Device*, UW MS thesis (2005)

D-³He Fusion Protons (14.7 MeV) Can Produce Short Half-Life, Positron-Emitting Radioisotopes

- Short half-lives reduce the radiation dose—particularly important for sensitive populations, such as children and pregnant women.
 - > IEC radioisotope production would allow in-hospital or in-clinic production, thereby reducing distribution difficulties for radioisotopes that decay quickly.

Parent Isotope	Production Reaction	PET Isotope	Half Life
¹⁸ O	(p, n)	¹⁸ F	110 min
^{14}N	(p, α)	¹¹ C	20 min
¹⁶ O ¹³ C	(p, α) (p,n)	¹³ N	10 min
¹⁵ N	(p, n)	¹⁵ O	2 min

• D-D neutrons and D-³He protons could also produce other radioisotopes or strategically important stable isotopes.

D-³He Fusion Protons Slow Down through the Peak of the ¹⁴N(p, α)¹¹C Cross Section

JFS 2012

¹¹C Tagged PIB Carrier Enables Early Detection of Alzheimer's Disease

Summary

- Inertial-electrostatic confinement (IEC) fusion devices:
 - Require relatively simple construction,
 - Necessitate high-voltage standoff,
 - Produce relevant neutron rates for detecting clandestine materials, and
 - > Potentially can create radioisotopes for nuclear medicine.
- UW diagnostics and theory for gridded IEC devices have led to reasonably well understood physics in the moderate-pressure (~1 mTorr) regime.
- Ion guns and IEC devices can address plasma-material interaction issues for fusion reactor divertors and first walls.
- Fundamental ion-beam convergence and ³He-³He reactions are under investigation.