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Objective:

Show that a fusion power plant could be made
passively proliferation-proof.
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What Does Breeding

Weapons-Grade Fissile Fuel Require?

® Proliferation-resistant power plant should defeat potential design modifications
that could produce fissile fuel (such as ?°Pu or 2*3U) in excess of a critical rate of
~1 kgly.

® Fusion designs generating low neutron levels using advanced-fuel cycles are

Nnecessary.

» Number of neutrons/year required to convert 238U to 1 kg 2**Pu corresponds to
0.72 MW of D-Tn’s or 0.13 MW of D-D n’s.

» For mixed D-T and D-D n’s, this implies a neutron wall loading
< 0.02 MW/m? for a cylinder withr=0.5 m, L = 10 m.

» For a 100 MWe power plant, this implies a neutron power
~1/200th of the fusion power.

» Actual neutron power required will depend on conversion efficiency and

neutron multiplication 1n the fissile-fuel breeding module.

® Key modifications to breed fissile fuel would include:

» Replacing advanced-fuel cycle with a neutron-rich one

» Adding a fissile-fuel breeding blanket in place of shielding modules

Advanced Fusion Fuels
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What Physics Characteristics Can Help Create a
Proliferation-Proof Fusion Power Plant?

What Engineering Characteristics Can Help
Create a Proliferation-Proof Fusion Power Plant?

® Use D-’He or third-generation fuel for low neutron wall loading.

» Active removal of tritium, if feasible, would reduce neutron production even further.

® Design so that the large gyro-orbits of fusion products are necessary for macroscopic stability.

» For example, D->He fusion protons have twice the gyroradius of D-T (or D- 3He) o particles and carry
four times the power. These may contribute substantially to field-reversed configuration (FRC) stability.

® Operate at small radius and large aspect ratio.

» Design so that replacing charged-particle power (flows to ends) with D-T neutron power will damage

superconducting magnets at same power levels.

Advanced Fusion Fuels Must Overcome
Larger Physics Obstacles than D-T
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D-3He Fuel Gives Lower Fusion Power Density, but This
Can Be Overcome by Moderately Higher Magnetic Fields

® D-T fueled innovative concepts become Power Density Relative to a
limited by neutron wall loads or surface D-T FRC with =85% and B=3T
heat loads well before they reach [3 or

B-field limits.
® D-3He needs a factor of ~80 above D-T

fusion power densities.

» D-T fueled FRC’s (3 ~85%) optimize
at B<3T.

» Fusion power density scales as 3*B*.

> Potential power-density improvement
by increasing 3 and B-field appears
at right.

SHe Resources Are an Issue: Earth Contains SHe Sufficient Only for an
Engineering Test Program, but Well-Developed Terrestrial Technology
Gives Access to ~10° kg of Lunar 3He
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® Shield

» Minimize thickness, so increased D-T neutron fluence would exceed magnet radiation damage limits.
® Superconducting magnets

» Design near quench stability boundaries.
® Direct conversion

» Generate most of the electric power by direct conversion of charged particles, so that D-T operation

leads to easily monitored drop in electricity production.
® Organic coolant for shield (needs verification)
» Design so proliferation neutron levels lead to excessive radiolytic and pyrolytic decomposition.

® Maintenance

» Sell turn-key units with no provision for shield or magnet replacement. (Allow routine maintenance.)

D-3He Fuel D-3He Fuel Can Utilize Direct Energy Conversion

Reduces Neutron Power Fraction and Effectively because of Its Large Charged-Particle Power
Eases Engineering Design Difficulties Fraction; D-T Fuel, with 80% Neutron Power, Cannot
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The Low Radiation Damage in D-3He High Heat Fluxes in D->He Reactors Stem
Reactors Allows Permanent First from High Power Density, but Are Manageable

WallS and S hie ldS to be Des i gn ed ® Charged-particle power transports from internal

plasmoid (in an FRC or spheromak) to edge region and

120 then out ends of fusion core.
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Summary

® A proliferation-resistant fusion power plant is feasible.

® Whether a completely proliferation-proof fusion power plant could
be designed awaits detailed study.

® Probably requires D-°He fuel and development of an attractive high-
power-density configuration, such as the FRC.

® Engineering features could make replacement of D->He by D-T fuel
difficult.

» Single-module reactors, full-lifetime shields and magnets, minimal
shield thickness, magnets near damage and stability limits, direct
conversion, organic coolant.



