Global Evaluation of The Prompt Dose in ITER using The Hybrid Monte Carlo/Deterministic Techniques

Ahmad Ibrahim, Scott Mosher*, Thomas Evans*, Douglas Peplow*, Mohamed Sawan, Paul Wilson, John Wagner*

* Oak Ridge National Laboratory

American Nuclear Society Fusion Energy Division 19th Topical Meeting on the Technology of Fusion Energy Las Vegas, Nevada 11/9/2010

• ADVANTG

- Dose at a point
- Macromaterials (MM) approach
- Adjoint flux collapsing
- Global dose
- Conclusion

ADVANTG (CADIS, FW-CADIS) dramatically speeds up calculation

^{*} Required ~3 weeks by an experienced MC practitioner using all applicable MCNP4C VR capabilities

John Wagner (ORNL)

ADVANTG is fast and easy

- Automatic creation of deterministic input file
- Only approximate deterministic fluxes

Coarse mesh

Number of cells and running times of deterministic calculations

		Number of cells (millions)	Forward calculation time (hr)	Adjoint calculation time (hr)
Dose at a point		0.6		1.9
Dose at 4 points		1.2	4.3	2.9
Global dose	Coarse	1	3.8	2.7
	Fine	8	24×3.3=80	24×2.6=62
	MM	1	4	3

Minimal penalty from deterministic part of hybrid sequence

Traditional Monte Carlo cannot calculate dose outside bioshield

14 orders of magnitude total neutron flux attenuation

	Dose (µSv/hr)	Relative uncertainty (RU)	Time (day)	Speed up	
MC(no CADIS)	4.8	76.7%	610.0	1	Requires 393 years to
MC (CADIS)	2.7	3.8%	8.6	29,000	

Deterministic (Denovo)

Calculation	Time (min)	Dose Rate (µSv/hr)
СС	7.6	7.2
мм	8.3	5.9
CC (fine)	62.5	3.6

MM closer to the right answer without time penalty

Monte Carlo (Monaco)

	Denovo time (min)	Dose (10 ⁻¹¹ Sv/hr)/Ci (Monaco)	Speed up
CC	20.9	2.5	1
MM	20.6	2.5	2.1

Better MC FOM (speedup) for free
Already in SCALE 6.1 6

Adjoint flux collapsing

$$\phi^{+}(\bar{R}, E_{coarse}) = \frac{\int_{E_{coarse}} \int_{\bar{R}} \varphi(\bar{r}, E) \phi^{+}(\bar{r}, E) \, dV dE}{\int_{E_{coarse}} \int_{\bar{R}} \varphi(\bar{r}, E) \, dV dE}$$

 ϕ^+ : Adjoint flux φ : Forward flux density

Calculation	Total number of energy mesh cells	Total flux per unit source (n/cm ² -sec)	Speed up (FOM, deterministic correction)
Analog		6.62E-08	1
Coarse mesh	10,125	5.27E-08	1,700
Fine mesh	1,265,625	5.27E-08	21,684
Adjoint average	3,000	5.27E-08	10,933
Adjoint weighted average	3,000	5.26E-08	13,180

- Decrease in weight window map size
 - 400
- Decrease in speed up (FOM)
 - <2

MM and adjoint flux collapsing effects on global MC efficiency

Mesh tally cumulative distribution function (CDF) for 10 days MCNP runs

Relative Uncertainty

Calculation	Voxels fraction <10% RU	Voxels fraction <100% RU
Analog	7.0%	13.1%
8 Million cell	6.2%	84.9%
1 Million cell	51.1%	87.3%
MM	56.0%	94.7%
Collapse	64.4%	97.8%

Global prompt dose

Ports effects

Accuracy of global calculation

With FW-CADIS, full global 3-D MC analysis of large and complicated models such as ITER is possible