

ITER Neutronics Modeling Using Hybrid Monte Carlo/Deterministic Techniques and CAD Based Monte Carlo

Ahmad Ibrahim, Scott Mosher, Thomas Evans, Douglas Peplow, Mohamed Sawan, Paul Wilson, John Wagner

> American Nuclear Society Radiation Protection and Shielding Division Topical Meeting Las Vegas, NV 4/19/2010

- Motivation for work
- Parameters calculated
 - Inboard (IB) toroidal field coils (TFC) nuclear heating
 - -Prompt dose outside bioshield
 - -Total neutron and gamma fluxes
- Conclusion

Large sizeComplex geometry

ADVATNG (CADIS, FW-CADIS) dramatically speeds up calculation

* Required ~3 weeks by an experienced MC practitioner using all applicable MCNP4C VR capabilities

Applications of CADIS and FW-CADIS

•Large systems

PWR facility 85 × 125 × 70 m

Times Square NYC 1200m×540m ×860m

Needed for complex geometries

Deterministic calculations only take few hours

	Number of cells (millions)	Forward calculation time (hr)	Adjoint calculation time (hr)
IB TFC	0.4	1.7	2.0
Dose	0.6		1.9
Total flux	1.1	4.8	3.9

- Super conducting magnet operating at cryogenic temperatures
- Neutrons and photons heating has to be removed
- Shielded by blanket and vacuum vessel (VV)

2006 CAD based MC benchmark

•UW results systematically higher •Is it be because of MCNP WWG????

MC figure of merit (FOM)

 $FOM = \frac{1}{(Max. uncertainty)^2 \times Time}$

	Time (day)	Max. uncertainty	Normalized FOM
Analog	121	5.9%	1
WWG	11	3.6%	30
FW-CADIS	4	5.0%	42

FW-CADIS controlled by occasional histories which took several minutes

- •Lost energy in front of VV
 - Acquired high weight

•This region should be shielded from TFC by VV •Streams directly to TFC where weights are very low

•A gap in VV

	Time (day)	Max. uncertainity	FOM before fixing	FOM after fixing
Analog	121.3	5.9%	1	
WWG	11.0	3.6%	30	
FW-CADIS	0.8	4.5%	42	275

Disappearance of long histories increased FW-CADIS FOM

Ŵ

Prompt operational dose outside bioshield

• Source-detector problem -CADIS

- Very challenging to MC
- •Only tackled by combinations of (1-D, 2-D) and 3-D

14 orders of magnitude neutron flux attenuation

Dose calculation

	Dose (mrem/hr)	Relative uncertainty	Time (day)	Normalized FOM
MC (No CADIS)	0.48	76.7%	610.0	1
MC (CADIS)	0.27	3.8%	8.6	10,566
Denovo	0.18	280 million cell 1 hr, 14 400 cores = 610 processors days		

Total neutron flux (Denovo)

With CADIS even very challenging problems are doable in reasonable time 18

Total flux (4 days)

•Global problem •FW-CADIS

neutron Results Total neutron Results Values

Neutrons

neutron Results

2.55E12 - 1.21E14 5.39E10 - 2.55E12 1.14E09 - 5.39E10 2.40E07 - 1.14E09 5.06E05 - 2.40E07 1.07E04 - 5.06E05 2.25E02 - 1.07E04 4.76E00 - 2.25E02 1.00E-01 - 4.76E00 2.12E-03 - 1.00E-01 4.47E-05 - 2.12E-03

Photons

Total flux (50 days)

neutron Results Total neutron Results Values

neutron Results Total neutron Results Values

4.71E12 - 3.25E14

6.82E10 - 4.71E12 9.88E08 - 6.82E10

1.43E07 - 9.88E08

2.07E05 - 1.43E07

3.01E03 - 2.07E05

4.35E01 - 3.01E03

6.31E-01 - 4.35E01

9.14E-03 - 6.31E-01

1.32E-04 - 9.14E-03 1.92E-06 - 1.32E-04

2.78E-08 - 1.92E-06

Neutrons

Analog

Total neutron flux cumulative distribution functions (50 days)

Total gamma flux cumulative distribution functions (50 days)

Coupling CAD based MC with hybrid techniques allows fast and accurate 3-D neutronics simulation of challenging and complex systems such as ITER