Nuclear Analysis Capabilities for Fusion Energy Systems
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Nuclear Analysis

Unlike fission where uranium Spﬁts NUCIear Ana|y5IS |S Essent|a| Pa rt Devemped Innovative Monte Carlo Tool

generating energy, fusion occurs when two of Design ACNP-CGM
hydrogen nuclei fuse together and release » Energetic 14 MeV neutrons are emitted in plasma and slowed e Direct use of solid model geometry In

energy down and absorbed by surrounding components MCNP

» Nuclear analysis for components surrounding the plasma is |
Two approaches: essential element of fusion nuclear technology - Use Common Geometry Module (CGM) to

*Tritium production in breeding blankets to ensure tritium interface MCNP d;;@gﬂy to CAD & other

 Magnetic confinement self-sufficiency ” -‘ D
J *Nuclear heating (energy deposition) for thermal analysis geomEtry data Examined effect of helical geometry

. Inertial confinement and cooling requirement e Production and nor;-uniforrg b’a?kEt ﬁnd divertor o
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Radiation damage in structural material and other sensitive MCNP experience on tota d uclear neating

components for lifetime assessment
. i .- . - *Provide adequate shielding for components (e.g., magnets) — ARIES-CS

D-T Fusion Represents a Nearly and personnel access

Inexhaustible Energy Source »Activation analysis for safety assessment and radwaste - HAPL

St Taas St e A i S e management - ITER FWS

Fuels: §§§§§§'§*§ - abundant 11 sea water > State-of-the-art predictive capabilities (codes and data) are R g

needed to perform required nuclear analyses Motivations

| . e Reduce impacts of manual conversion o B
» There are several numerical methods gnd codes available of 3-D model data L
to solve the Boltzmann transport equation

» The methods can be broken down into two groups

Deterministic method:

Application to ARIES-CS
Compact Stellarator

Nuclear Fusion
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- Simplifications .

Directly solves the equation using numerical — Errors

techniques for solving a system of ordinary and partial _ _ Néutro nﬁﬂux in Laser Bwa J Duct
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MeV + others

Li+n -->T +*He + 4.8

“Real” fusion fuel cycle:
. °Li+D =2%He +22.4 MeV
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-Statistical based method: represen tation
Solves the equation using probabilistic and statistical

Fusion Reactors are Complex with techniques Activation Codes » 40 degree

e Comparing 4 results
- Neutron wall loading

- Divertor fluxes and
heating

- Magnet heating
- Midplane port
shielding/streaming
e Participants

-UW, FZK, ASIPP,
JAEA

, I | machine sector

Many Components »Each method has its strengths and weaknesses e Used for

- ki ; Method validation of

Deterministic Approach Solve rate equations for radioactive nuclide MCNP/CAD tool

Angle i % inventory, decay heat, biological dose, and radwaste e 90834 surfaces
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S, - Discrete Ordinates P, - Moment expansion -
Codes e 17 material

N ' Multi-group (175n-42g) & ALARA specifications
| FW / Spatial discretization
Blanke Finite Element (un-structured meshes) DKR-PULSAR

RF ' aser hean N i ini i i , REAC2 -
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Advantages : :
- Spatial Resolution n Afila FISPACT e
- Flux evaluated at a large number of points P ORIGN?2 N ””jjﬁ?jm
“ Disadvantages ANITA .
hitesinl - Angular Quadrature approximation ACAR ot T
urnn - Legendre Polynominal expansion of cross- sections | !
- Ray-Effects for streaming problem |- ACT4
- Group treatment of energy variable
- Require large storage space for multi-dimensional calculations
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Codes ~ ;
ARIES HAPL DANTSYS, DOORS. PARTISN code systems (1D, 2D, 3D finite difference) Nuclear Data

ATTILA (3D finite element with CAD coupling)
Evaluated nuclear data K o | /i |

— Monte Carlo Approach produce working libraries for use with nuclear analysis codes Towm e wo o am we ww e I o e S Sy e

US: ENDF/B-1V, -V, -VI, -VI | . . , .

" Vacuum Vessol Method ENDF/B-VII released Dec 15, 2006 ITER First Wall/Shield

o @ poctors v . . . v . ‘ P~ .
T eyt  Use probabilistic and statistical approach to solve transport equation Japan: JENDL-3.2, JENDL-3.3 MOd U le 1 3 MOC ku p
e § homting random number Model generated by designers using
rom. diagnostics '
54 - Exact treatment of the transport process L L L. -
PoTE P e In addition to basic transport and scattering cross sections,
- Require variance reduction techniques to improve accuracy -Damage energy cross sections- for atomic displacement

""" 24m high x 28 m die. e The particle travel distance and interaction physics are converted to EU: JEFF-3.1
% teet blanksts
Advantages e [ . common tools facilitates analysis
Advantages odes: NJOY, TRANSX, AMPX Y
= - Exact source-modeling capability ial remcHan Crete oo Are Aamarate
6, renrrangad - Continuous (pointwise) energy treatment of the cross-sections special reaction cross sections are generated
ITER - Usually cannot generate accurate results at all locations (dpa)
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Toreoidal Field Coil .
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Port Plug (C Heating) probabilistic and cumulative distributions, that are sampled using a RE: BROND-2 .1 ‘
2 Hyeitors/FAH
Diverter - Exact Geometrical representation e Process data in either Multi-group or continuous energy format
Torus Cryopump
-Kerma factors- for nuclear energy deposition
- Many particle histories and large CPU time to obtain accurate results -Gas production (tritium, helium, hydrogen)

15t Integrated Fusion Test Reactor

*Agreement signed November 21, 2006

*]TER construction starts in 2007 at Cadarache, France.

WS results

First plasma 1n 2016 and 20 years of operation.




