

Helicon Ion Source and Core Physics Research for the UW IEC Device G.R. Piefer¹, K. Tomiyasu², J.F. Santarius¹, R.P. Ashley¹ G. A. Emmert¹, A.L. Wehmeyer¹, G.L. Kulcinski¹ ¹Fusion Technology Institute, University of Wisconsin—Madison ²Tokyo Institute of Technology

IEC Theory

•Inertial-Electrostatic Confinement (IEC) Devices operate by ionizing fusion fuels and accelerating ions into a spherical potential well which is created by concentric spherical electrodes

•Present gridded IEC devices operate at relatively high pressures, making losses to atomic processes dominant

IEC Device Operating at ~7mT

•Reducing neutral pressure will reduce losses, such as charge exchange and ionneutral collisions. A computational and experimental campaign is underway to explore this.

Ion Source

• A helicon ion source is used to achieve high current and low pressure

Ion source/extraction system schematic

• The source is mated to an IEC and high voltage is used to inject the ions

Ion source mated to IEC

He Beam Discharging into IEC

2004 Innovative Confinement Concepts Meeting May 25-28—University of Wisconsin--Madison

PDS-1

- 1-D MC-PIC code written by UC-Berkeley, adapted by R. Nebel at LANL and K. Tomiyasu at UW-Madison for IEC
- Models atomic, nuclear and some surface interactions
- Code predicts low-temperature trapped plasma:

Potential inside IEC cathode

Fusion rate vs. R

radius : r [m]

() 2

• Code has been run at 2 mtorr pressure and will be adapted for simulation near 50 µtorr

Ion Flow Analysis

• Inward attenuation on a partial pass (similar outward equation), grid attenuation not shown:

$$f_{in}(r, s) = \exp\left[-\int_{r}^{s} n_g \sigma_{ex}(s, q) dq\right]$$

 Infinite number of passes gives the total current, J(r,s), at r from ions born at s [total current J(s)]:

 $\frac{f_{\text{in}}(r,s)}{1-f_{\text{in}}^2(0,s)} + \frac{f_{\text{out}}(0,s)f_{\text{out}}(r,s)}{1-f_{\text{out}}^2(0,s)}$ J(r, s) = J(s)

where

$$J(s) = \int_{s}^{r_{a}} S(s, q) 4 \pi q^{2} d q$$

• Ion source, S(r,s) using flux conservation:

 $S(r, s) = \frac{n_g \left[\sigma_{\text{ex}}(r, s) + \sigma_{\text{iz}}(r, s)\right] J(r, s)}{2}$

 Resulting equation is a Volterra equation of the 2nd kind, which will be solved numerically.

Summary

- Experimental theoretical, and computational campaigns are underway to investigate IEC core physics
- Helicon ion source constructed to achieve core convergence experimentally
- PDS-1 has shown trapped plasma population in core at 2 ml
- Ion flow analysis allows lifetime tracking of ions

