

Design, Fabrication and Maintenance Considerations of Blanket Options for Magnetic Intervention

G. Sviatoslavsky,
I.N. Sviatoslavsky,
M. Sawan (UW),
A.R. Raffray (UCSD),

August 9, 2006

- Magnetic intervention chamber design
- Chamber maintenance
- SiC blanket module fabrication
- External dump housing concept
- Flibe blanket concepts

- Magnetic intervention chamber design
- Chamber maintenance
- SiC blanket module fabrication
- External dump housing concept
- Flibe blanket concepts

Blanket Design Overview

- PbLi Coolant
- Silicon Carbide Blanket structure
- Maximum FW temperature of 1000°C
- Maximum allowable PbLi/SiC Temp. 1000°C
- Concentric channel approach similar to earlier HAPL blanket designs
- Self-draining blanket modules
- Maintenance access is via removable shield modules at each pole

Chamber Design

Chamber Shield (magnets not shown)

- Magnetic intervention chamber design
- Chamber maintenance
- SiC blanket module fabrication
- External dump housing concept
- Flibe blanket concepts

Chamber Maintenance Scheme

Remove Bloods Grant Bloods Blo

August 9, 2006

- Magnetic intervention chamber design
- Chamber maintenance
- SiC blanket module fabrication
- External dump housing concept
- Flibe blanket concepts

Blanket Sub-Module

- SiC cooled by high velocity flow in gap
- Low velocity return flow in center channel

Blanket Sub-Module Fabrication

Issue:

Complex concentric walls prevent assembly of inner and outer channels

Solution:

Expendable core form fabrication

(1.5 mm tolerance for un-machined surfaces)

3. Two-piece form fitted over inner channel

1. inner channel form

4. Lay-up & infiltrate outer channel

Fusion Technology Institute

2. Lay-up & infiltrate inner channel

5. Consume both forms via chemical or thermal process

- Magnetic intervention chamber design
- Chamber maintenance
- SiC blanket module fabrication
- External dump housing concept
- Flibe blanket concepts

Ion Ring Cusp Lifetime Concerns

- **Issue 1**: Ion ring cusp dump must absorb very high levels of ion energy
 - See R. Raffray ion dump issues presentation
- Solution 1: Wetted ring cusp dump surface
 - Dump surface continuously replenished
- Issue 2: Vapor interfering with optics, target injection and chamber evacuation
- Solution 2: Externally Housed Dump

External Dump Concept

August 9, 2006

Fusion Technology Institute

External Dump Issues

- Coil arrangement to divert ions through slot to external dump
- Difficulty limiting vapor entering chamber
- Complicates support of chamber upper half
- Complicates draining of mid-upper blanket modules

- Magnetic intervention chamber design
- Chamber maintenance
- SiC blanket module fabrication
- External dump housing concept
- Flibe blanket concepts

Sub-module cross-sections for two Flibe blanket concepts

Be balls contained in a SiC screen

Be rods

Conclusions & Recommendations

- Chamber maintenance scheme has little/no impact on magnets or lasers
- Expendable core fabrication viable for concentric channel configuration
- Concern over armored dump lifetime due to high level of ion energy
- Wetted ring cusp dump externally housed
 - Mitigating chamber vapor introduces other issues
- Flibe blanket concepts incorporate Be for breeding
 - Adds complexity to an already complex design

Designing a chamber for magnetic intervention is challenging ...

... Genius 99% perspiration ...

... Got deodorant?