Electricity Production from Laser Fusion Reactors: Technology Aspects of Power Conversion Chambers

> G.L. Kulcinski Director Fusion Technology Institute University of Wisconsin

> > SPIE-99 November 1, 1999 Osaka, Japan

Inertial fusion energy (IFE) power plants of the future will consist of four parts

There are 4 Current ICF Drivers

Z-Pinch – Energy application depends on finding a credible rep-rate concept

Light ion development currently on hold due to inability to focus adequately

Approximately 80% of the IFE Reactor Designs are 15 Years Old and Need to Incorporate Recent Target, Driver, and Chamber Improvements

- V
- The level of research on IFE power plants has historically been much lower (by a factor of 10) than for MFE power plants
- In spite of the lower level of investment, there have been over 50 individual IFE power plants analyzed since 1972

Current Status of IFE Power Plant Design

Promise

- Decoupling of Driver and Chamber Reduces Development Costs and Increases Reliability
- Capability to Greatly Reduce Structural Materials Development Program
- Capability to Greatly Reduce Long Lived Radioactive Waste (volume and level)
- Indications of Lower Direct Capital Cost

Problems

- Target Design Still Uncertain
- High Efficiency (>10%), High Rep Rate Lasers Still Needed
- Cost of Laser and Ion Driver Pushes Economic Power Plants to ~ 1 GWe

V

Driver

Lasers	 NIF Will Give Reactor Level Energies (1.8 MJ, 500 TW) SWL KrF/DPSSL Lasers Needed for Rep Rate
Heavy lons	RF or Induction Linacs Favored
	 Must Scale up to Higher Energy (both MJ and GeV)
Light lons	 "Inexpensive' Hermes Technology Demonstrated at Reactor Level Energies
	 Have Not Demonstrated Sufficient Beam Focusing and Purity
Z Pinch	"Inexpensive" Pulsed Power Demonstrated
	 Rep Rated Coupling to Target Design Not Shown

Characteristics of Drivers for Recent IFE Power Plant Designs

	Laser HIB		LIB	Z-Pinch (estimated)	
Energy - MJ/pulse @ ~300-500 TW	1-5	2-5	5-10	5-20	
Driver Efficiency-%	>5	25-40	20-25	15-20	
Efficiency to Capsule-%	>5	2-3	2-3	1-2	
Total # Pulses	>10 ¹⁰	>10 ¹⁰	>10 ¹⁰	>10 ⁹	
Current Status	•Glass ~ 40 kJ, 40 TW x-rays •KrF ~ 5 kJ •DPSSL ~ 0.1 kJ •NIF-1.8 MJ, 500 TW	•SLAC~10¹¹ pulses, 180 Hz •I _{inj} ~1 A	•Hermes ~ 300 kJ, 13 TW, 10 ⁻⁴ Hz •RHEPP-II~3 kJ, 120 Hz	•Z ~ 1.8 MJ, 280 TW x-rays, 2x10 ⁻⁵ Hz	

Differences Between KrF and DPPSL Laser Power Plants

- DPSSL drivers may require up to 5% of the target chamber solid angle for beams, while the SOMBRERO KrF design called for 0.25%.
- The larger solid angle leads to more or larger ports that will have some effects on blanket design (the SOMBRERO granular flow will be perturbed).
- DPSSLs will also require more or larger final optics.
- DPSSL lasers have a wavelength of 0.35 μ m compared with 0.25 μ m for KrF. This affects laser-target coupling, laser transport through chamber gases, and the choice of final optics (KrF light is absorbed in silica, so transmissive final optics are hard to imagine).

There Are Four Different ICF Target Designs

Baseline Target Gain Curves Were Used for the Last Laser Fusion Power Plant Designs

Input Energy (MJ)

Key Considerations for IFE Power Plant Designs

	Chamber
Lasers	 Symmetric Illumination Favors Dry/Wetted Wall Approach With Gas Protection
Heavy lons	 2 Sided Indirect Drive Allows for Thick Free or Inhibited Flow Liquid Metallic/Molten Salt Protective Walls
Light lons	 Could Use Dry/Wetted/Liquid Walls With Gas Protection
Z Pinch	 Chamber Design Uncertain Until Rep Rated System Identified
	Shrappel from Target Will be a Problem

Laser Driven Reactor Designs

HYLIFE REACTION CHAMBER AND POWER PLANT

L

A stream of "stars" could fuel an electric power plant

Xenon Gas in SOMBRERO Protects First Wall

- In SOMBRERO, 0.5 torr of Xe stops 1.6 MeV carbon ions (containing most of the non-neutronic target output) before they reach the target chamber wall.
- The fireball radiation emission is slow enough that the graphite first wall stays below the sublimation limit. BUCKY predicts a peak surface temperature of 2155 C.
- The shock applied to the wall applies an impulse of 2.21 Pa-s and a peak pressure of 0.013 MPa.
- BUCKY simulations show that wall survival is sensitive to Xe opacity.

Laser Fusion Reactors Have Evolved Over the Past 20 Years

	SOLASE	HYLIFE	Cascade	SOMBRERO	KOYO
Year Published	1977	1978	1983	1992	1993
Laser	CO ₂	SWL	SWL	KrF	DPSSL
Laser Energy, MJ	1	4.5	1.5	4	4
Net Power, MWe	965	1010	800	1000	2840 (4 units
Driver Eff., %	6.7	5	10	7.5	12
Illumination	quasi-sym.	2-sided	2-sided	symmetric	symmetric
Target Gain	150	400	200	118	150
Rep Rate, Hz	20	1.5	5	6.7	3
n, MW/m²	5	0.3	0.2	3.5	0.07
Th. Eff., %	43	39	55	47	43
Breeding Matl.	Li₂O	Li	LiAlO₂	Li ₂ O	PbLi
Structural Matl.	C	Steel	SiC	C	SiC

Historical Trends in Laser Fusion Power Plant Designs

Time Perio	od Driver/Target Related	Reactor Chamber Related
70's	 Long Wavelength Lasers 	Liquid Li Emphasis
	 Low Driver Energy ≈ 1 MJ 	Wetted FW Protection
	High Gain Curves	 High Rep Rate (10-100 Hz)
	Direct Drive	Internal Liquid Protection Introduced
80's	 Short Wavelength Lasers 	 Solid Li Compounds for T₂
	• Higher Driver Energy \approx 1-5 MJ	Granular Solids FW Protection
	Lower Gain Curves	 Lower Rep Rate (1-10 Hz)
	 Indirect Drive Considered 	
	KrF/DPSSL Lasers	 Fluidized LiO₂ Coolant
	 Driver Energy ≈ 5 M 	 Dry FW Reanalyzed for Direct Drive
90's	 Fast Ignitor Concept Explored 	 Emphasis on SiC/C FW
	Grazing Incidence Angle Mirrors	Liquid Metal "Curtains" for Indirect
	Direct Drive More Prominent	Drive

The Driver and Conventional Power Conversion Equipment Dominate the Capital Cost of IFE Power Plants

Example

	% of Total Capital Cost in Category				
	Driver	Chamber	Bldgs.	Heat Transfer/	Other
				Turbine/Electric	
SOMBRERO	31	9	15	34	11
OSIRIS	37	8	9	34	12

Conclusion: Highest leverage is gained through the driver. The cost of the chamber is only of secondary importance with respect to the capital cost.

IFE WILL REQUIRE TARGET DEVELOPMENT

- CURRENT ICF TARGETS COST ~\$500-\$2500 EACH DUE TO:
 - Few-of-a-kind designs constantly changing
 - Small scale production batches of ~5-25 targets
 - Extensive characterization each individual target has a "pedigree"

- $\begin{tabular}{ll} \hline \bullet & \end{tabular} IFE TARGETS MUST COST \leq 25 \end{tabular} EACH \end{tabular}$
- WHAT DEVELOPMENT IS NEEDED?
 - IFE target designs including fabrication considerations and tolerances
 - IFE-specific target fabrication development capsules, hohlraums, assembly, fill and layering, characterization

QTYUIOP

10⁴ REDUCTION IN HTGR FUEL PRODUCTION COST

- High-temperature gas-cooled reactor (HTGR) fuel has similarity to IFE capsules
 - Multiple layers of high and low density coatings
 - Stringent quality requirements
- Over 10¹¹ fuel particles have been produced in a small commercial production facility for Fort St. Vrain reactor
- Quality control was carried out by statistical means
 - Production yield was ~90%
- Cost reduction was ~10⁴ due to scale-up
 - Bench scale 20¢ per particle
 - FSV was less than 0.2¢ per particle
 - Projected commercial 0.002¢ per particle

HTGR fuel particle with 4 different coating layers

... Indicates that low cost IFE targets are not out of reach, but greater precision will be required

COST REDUCTION OF HTGR FUEL PARTICLES WAS SIGNIFICANT

There Are Many Ways That The Predicted Cost of Electricity from IFE Power Plants Can Be Reduced

Conclusions

- Target gain and driver efficiency high enough for <30% of power recirculated to driver (η G>7) [CoE increases 20% at η G = 5].
- Low cost driver: <\$1 B total capital cost [CoE increases 20% at \$2 B].
- Low cost targets: <30 cents/target [CoE increases 20% at \$1.1/target].

Conclusions (contd.)

 Lifetimes for driver, chamber, final optics allowing >80% plant availability.

 Radioactivity low enough to avoid need for public evacuation plans (<1 REM site boundary dose in worst-case accidents), to avoid active safety systems, and to avoid high-level waste disposal (achieve Class C or better).

• Affordable development: driver test prototype <\$150 M hardware and ability to test fusion chambers at reduced scale (<1 m radius).