Non-Electrical Power, Near Term Applications of Fusion Energy

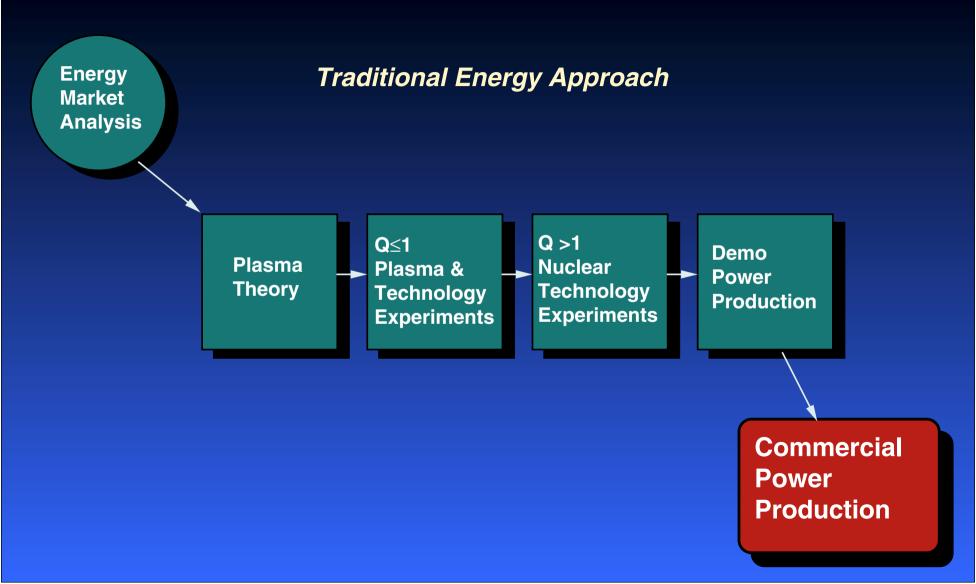
G.L. Kulcinski Director Fusion Technology Institute University of Wisconsin

18th Symposium on Fusion Engineering October 25–29, 1999 Albuquerque NM Why Are We Concerned About the Timetable for Demonstrating Benefits from Fusion Energy?

- Commercial electricity from fusion is now perceived as being 50 years or more away
- Developing the first fusion reactor is a 20\$B+ program
- Keeping Americans' attention on a multi-billion, multi-decade project will be difficult

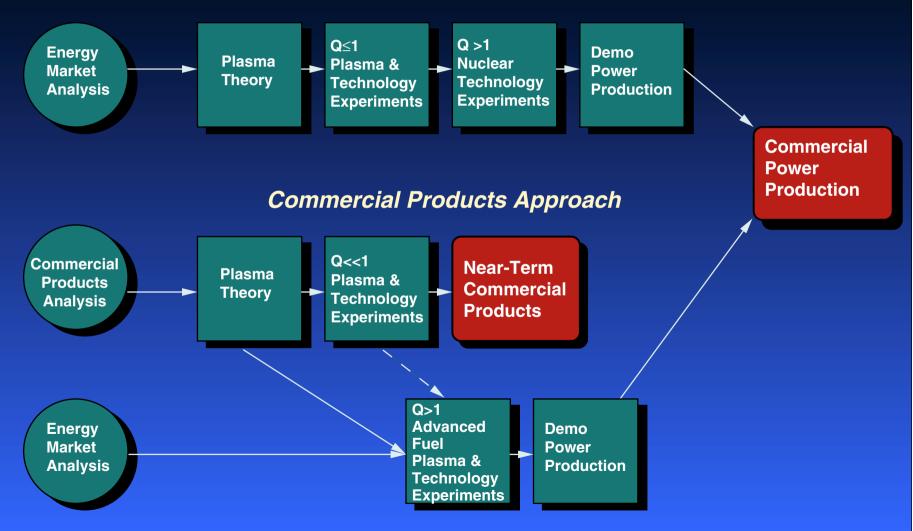
What Can We Do to Demonstrate Benefits from Fusing Plasmas on a Much Shorter Timeframe (≈5-10 years) and for Much Less Money (<<100 \$M)?

Distinction Between "Spinoffs" and "Applications"


• "Spinoffs" generally occur as an unintended consequence of research.

"Applications" are the uses of a technology to a specific problem which was recognized at the beginning.

• In today's funding climate it is difficult to get Federal research dollars specifically for "spinoffs" (even though the spinoffs can be quite important to society in general, and business in particular).


"Applications" open up smaller, but perhaps more reliable funding sources from industry.

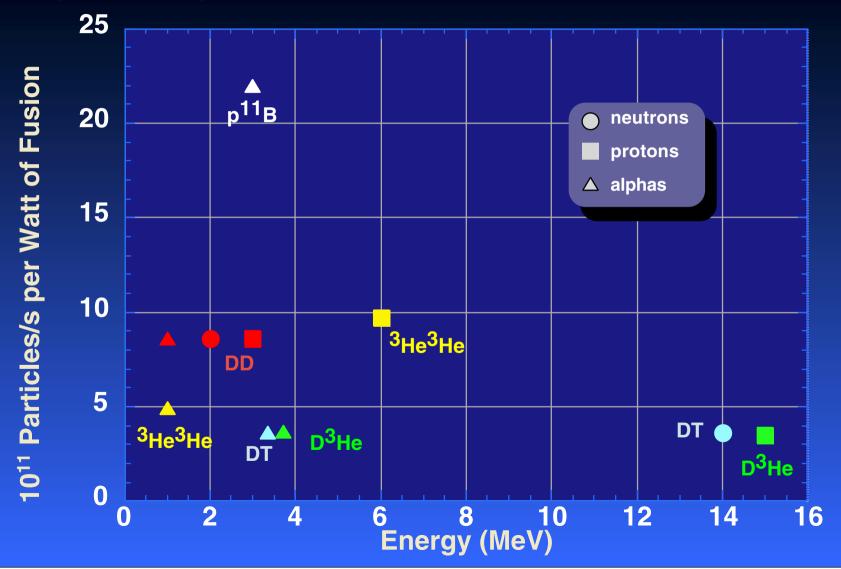
How Do We Get There From Here?

How Do We Get There From Here?

Traditional Energy Approach

In the Near Term (where Q<<1), What Does the Fusion Community Have to Sell That is Unique?

• Portable Source of Neutrons


Non-proliferating technology, No fission products, Small source possible (few watts fusion power), Thermal to 14 MeV Energy

Portable Source of Protons

Up to 14 MeV Energy Little auxiliary radioactivity Competes with accelerators or cyclotrons

Portable Source of Electromagnetic Radiation

Fusion Fuels Can Produce Large Numbers of Highly Energetic Particles for Commercial Applications

What Use Can Society Make of Small, Compact (Q<1) Fusion Neutron or Proton Sources?

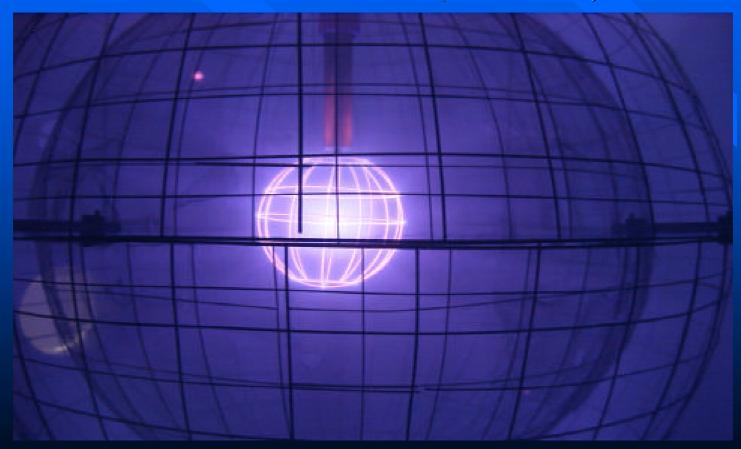
Neutron Applications	•Detection of Clandestine Materials •Trace Elements	PET Isotopes- ¹⁸ F	Isotopes- ⁹⁹ Mo	•Destruction of Fission Waste •Tritium Production
Proton Applications	PET Isotopes - ¹⁵ O, ¹¹ C, ¹³ N	PET Isotopes- ¹⁸ F	Isotopes- ^{99m} Tc	•Destruction of Long Lived Radioisotopes
Fusion Power Level	1–10 Watts	10 – 1000 W	1 – 100 kW	10 – 1000 MW

nearer term

"Humanity is Losing the War Against Land Mines!"

Johan Molander U.N. Conference on Land Mines January, 1995

- Approximately 800 people are killed per month and thousands injured by land mines
- An estimated 100 million land mines now sit in about 60 countries
- 2 million new mines (costing ≈ \$5 each) are planted each year and only 100,000 are cleared per year at an average cost of \$1,000
- Red Cross estimates that in Cambodia, 1 person in 235 has had a limb amputated, most from mine blasts
- In Afghanistan, nearly 1/4 of mine casualities are children
- In Libya, 27% of arable land remains covered by mine fields dating to World War II


Neutrons Can Be Used to Detect Explosives

- Explosives contain a high concentration of nitrogen and a characteristic ratio of N/O.
- Several Techniques Can Be Used
 - => Nitrogen (quantity)
 - => C, N, O (quantity)
 - => C, N, O (quantity)
 - => C, N, O ratio

- Thermal Neutron Activation
- Elastic Neutron Scattering
- Pulsed Fast Neutron Activation
- Fast Neutron Associated Particle

• Source Strength POP - $3x10^6$ n/s (current capability, $2x10^7$ n/s DD) Goal - $5x10^{10}$ n/s DD 10^{12} n/s DT

Record Steady State D-D Reaction Rate Achieved in Wisconsin IEC Device 2.2x10⁷ neutrons/s (2.45 MeV)

Neutrons Can Be Used to Detect Transuranic Elements

 Major problem in waste at former US (and USSR) weapons facilities.

 Use neutrons to promote fission and detect delayed neutrons.

• Thermal neutron source desirable $10^{12} n/s DT => 10^{11} n/s$ thermalized

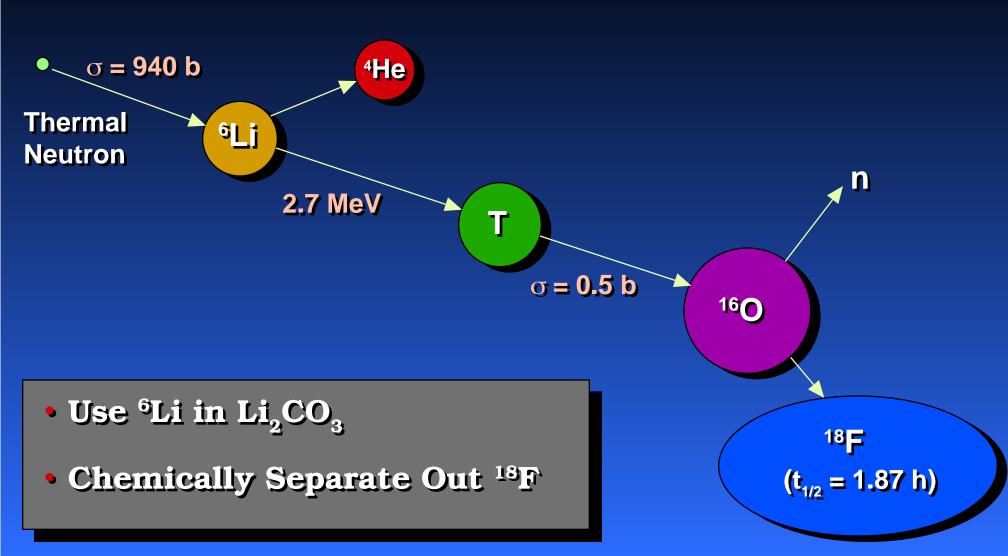
• Competition $-\frac{252}{Cf}$ (12 M\$/g), 10^{12} n/s per gram

Neutrons Can Be Used to Find Chemical Weapon Agents

Elements of Interest => P or F (nerve agents) Cl, As, S (mustard gas)

Location => •Unexploded Shells •Buried on Military Sites (~250) •Smuggled into Sensitive Areas

Technology Required $=> >10^{12} \text{ n/s of } 14 \text{ MeV n's}$


Positron Emission Tomography (PET) Has Become a Major Diagnostic of Cancers

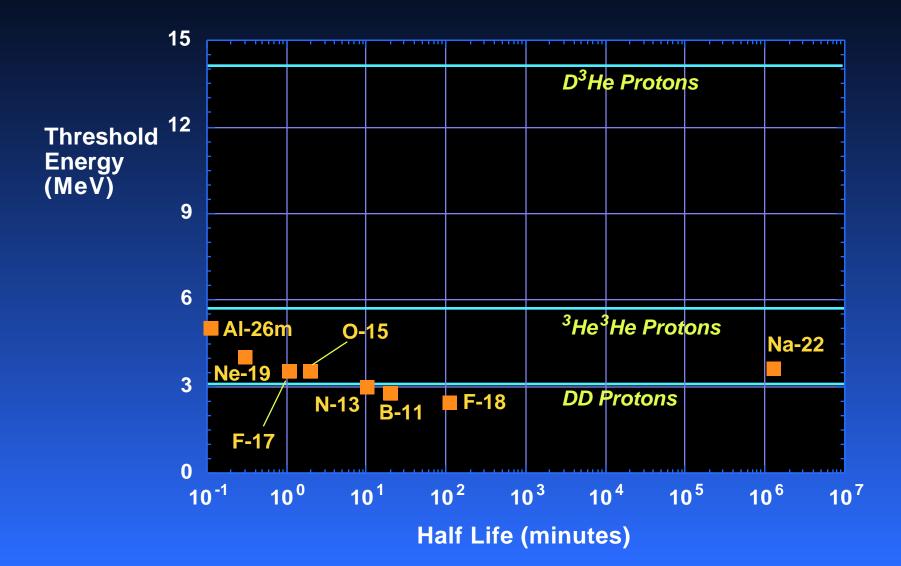
- There are now over 60 PET research and 20 PET distribution centers in the U.S.
- When an isotope emits a positron (e⁺), it combines with an electron (e⁻) to emit two 511 keV gamma rays. The γ rays reveal the location of the isotope.
- PET has detected unsuspected metastases not seen by CT, MRI, and US in 15-30% of patients thus altering surgical procedures and saving an average of \$5,000-30,000 per patient.
- More than 80% of the PET applications use ¹⁸F in fluorodeoxyglucose (FDG).
- On 1/1/98, Medicare started reimbursing medical organizations for certain PET applications (~ \$2,000 total for FDG-PET).
- Cyclotrons (costing 2-2.5 \$M each) use 15-20 MeV protons to make the ¹⁸F (half-life 1.83 h).

There Are Currently Over 60 PET Centers in the United States

Neutrons Can Be Used to Produce ¹⁸F (after J. Bayless)

Economics of Producing ¹⁸F with Neutrons (after J. Bayless)

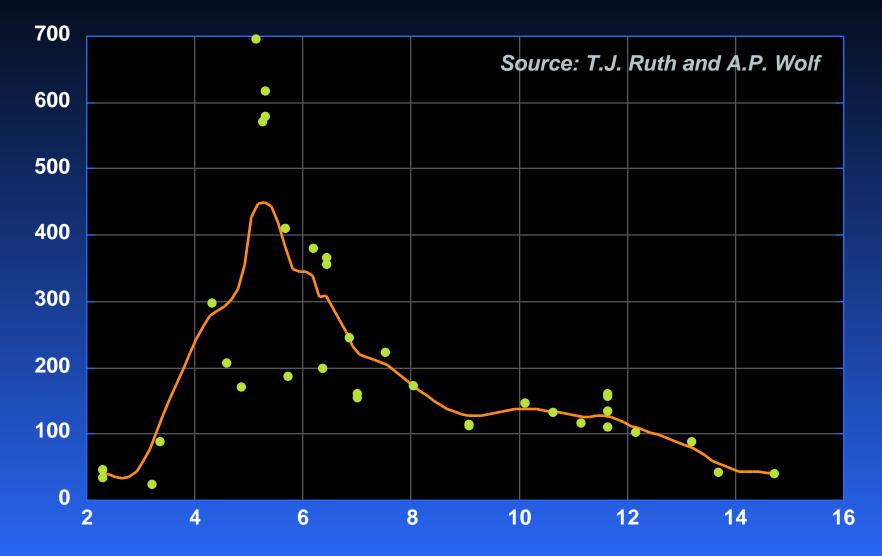
Feed Material: 30 g of Li_2CO_3 (95% ^oLi)


Neutron Source

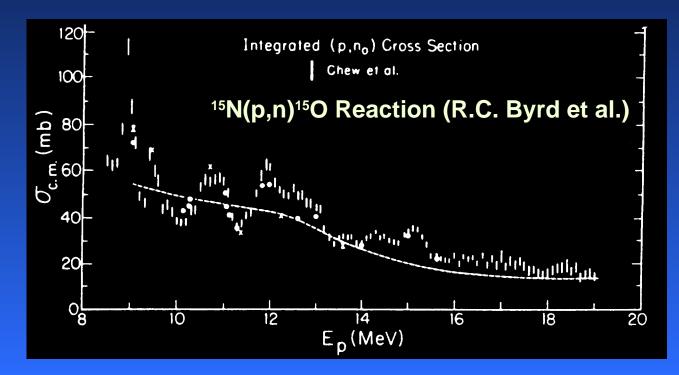
- 3×10^9 n/cm²-s (from a 5×10^{12} n/s 14 MeV source with D₂O moderator)
- Production Rate ¹⁸F = 5 Ci/hr (5x10^{11 18}F atoms per second)
- Cost Goal (<0.5 M\$)

Cyclotron

- 8–10 MeV Protons
- 100 μA/cm² (6x10¹⁴ particles/cm²-s)
- ~1 Ci/hr
- Cost ~ 2 M\$

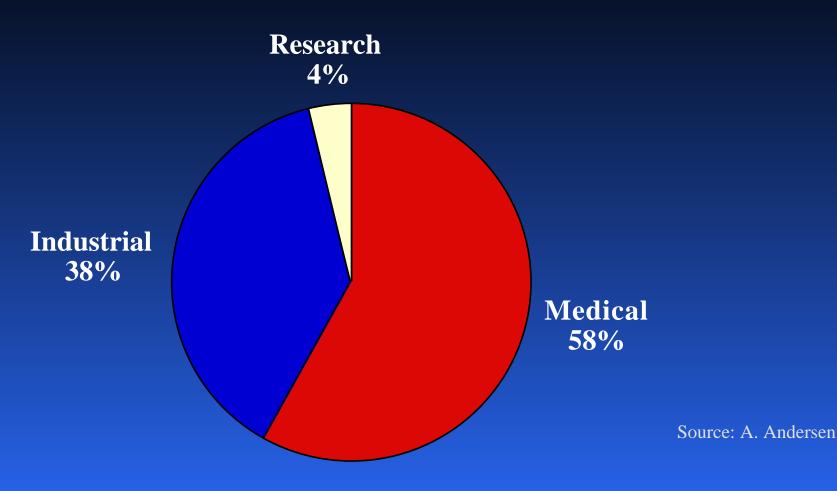

A Wide Variety of Positron Emitters Can Be Made with Protons from Advanced Fusion Fuel Reactions

Record Steady State D-³He Reaction Rate Achieved in Wisconsin IEC Device 1.5x10⁵ protons/s (14.7 MeV)

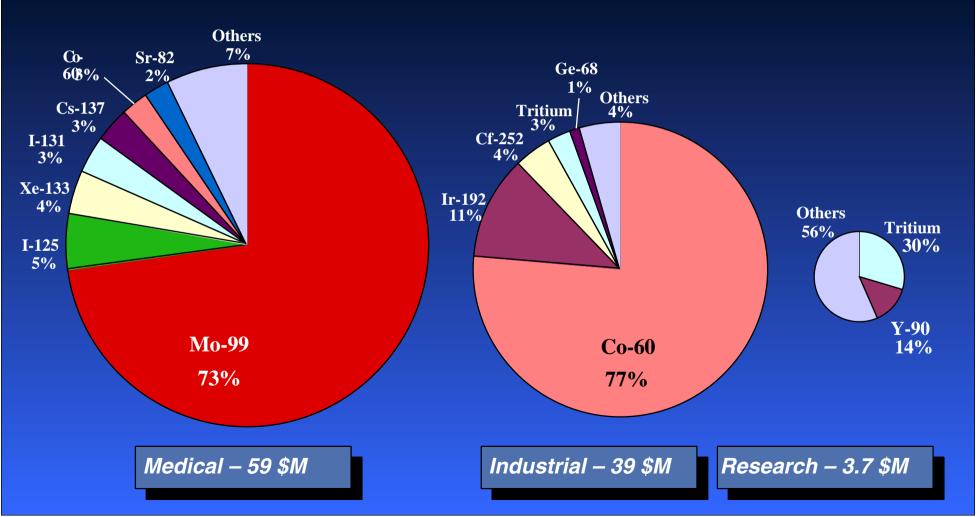

The ¹⁸O(p,n)¹⁸F Cross Section Peaks Between 5–6 MeV

Proton Energy (MeV)

Small Mobile PET Generators Could Reduce Radiation Exposure to Patients


- Presently ¹⁸F ($t_{1/2}$ = 1.83 h) is used extensively for brain scans
- Current regulations preclude the repeated use of ¹⁸F on young children and pregnant women
- An ideal PET isotope would be ${}^{15}O$ (t_{1/2} = 2.03 min)
- 1 Watt of D³He fusion could produce $\approx 8 \text{ mCi}$ of ¹⁵O (steady state)

Radioisotopes Particularly Suited For Production With Protons From D-³He Fusion


Isotope	t _{1/2}	Parent Isotope	Maximum Steady State Production at Equilibrium (mCi/watt D- ³ He)	Useful Dose (mCi)
¹⁵ O	2.03 m	¹⁵ N	8	~ 1
¹⁸ F	1.83 h	¹⁸ O	14	1 – 10
^{99m} Tc	6.01 h	¹⁰⁰ Mo	4	1 – 25

The World Demand for Radioisotopes was Dominated by Medical Applications in 1994

Total Demand-102 \$M in 1994

The World Demand for Radioisotopes was Over 100 \$M in 1994

Why is ⁹⁹Mo (t_{1/2}=66 hr) Important?

• Its daughter, ^{99m}Tc, has a half life of 6.04 hr and is used in over 10,000,000 clinically administered procedures in the U.S. annually (80% of all radioisotope procedures).

^{99m}Tc is used for:

bone scans biliary scans lung scans gastrointestinal scans heart scans Meckel's (stomach) scans white blood cell scans liver/spleen scans renal (kidney) scans

thyroid scans brain scans

• Roughly 40% of hospitalized patients in the U.S. have at least 1 nuclear medicine study during their stay.

How is ⁹⁹Mo Produced?

Fission Product of ²³⁵U

10,000 Ci ⁹⁹Mo per gram Mo fission product

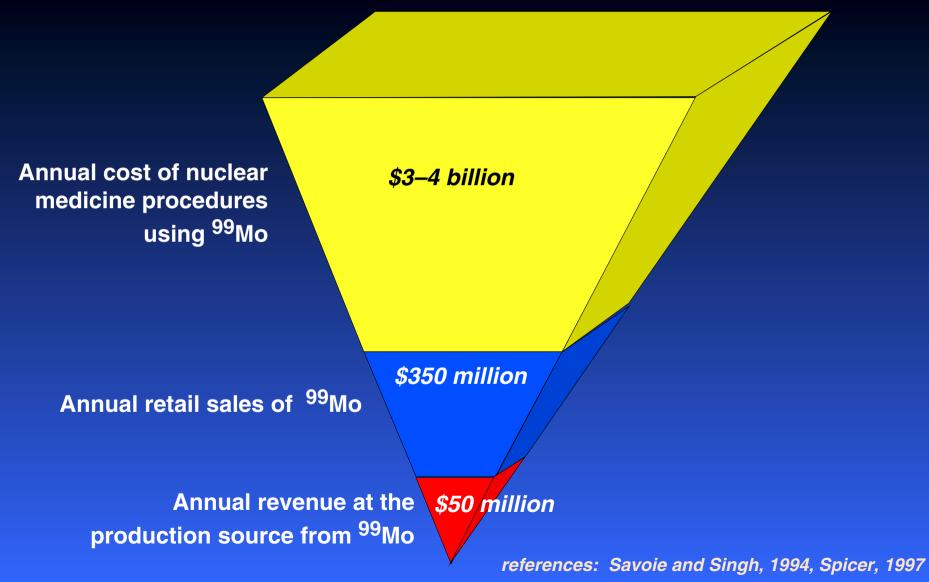
Fission neutron absorption by ⁹⁸Mo (24% of elemental Mo)

⁹⁸Mo (n,γ) ⁹⁹Mo 1 Ci/g of Mo

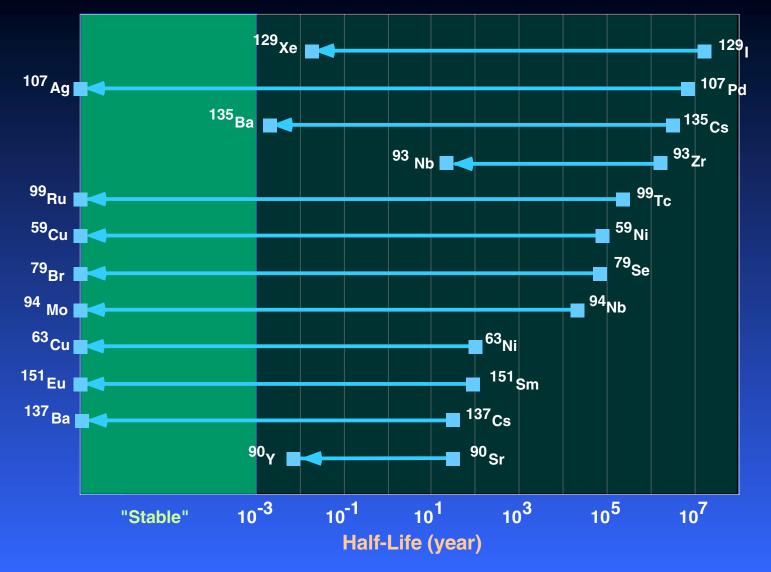
Fusion neutron irradiation of Mo

⁹⁸Mo (n,γ) ⁹⁹Mo ¹⁰⁰Mo (n,2n) ⁹⁹Mo

0.05 Ci/g for IEC $- 10^{15}$ DT n/s 0.5 Ci/g for IEC $- 10^{16}$ DT n/s


3 kW fusion power 30 kW fusion power

The ¹⁰⁰Mo(p,2n)^{99m}Tc Cross Section Peaks at the Energy of the D³He Proton



Proton Energy-MeV

⁹⁹Mo Revenue Chain

Protons from the D³He Reaction Can Be Used to "Burn Up" Long Lived Nuclear Waste

The Use of D-³He Reactors for Burning Fission Waste

• The waste is injected into the plasma as impurity and the high 14.7 MeV proton flux $(10^{20} \text{ protons/s})$ is used for transmuting the waste via mostly (p,n) reactions.

At present, typical cyclotrons can produce 100 μ A of 10 MeV protons at a capital cost of \$2 million.

• A 200 MWt D-³He reactor would produce about 10 A of 14.7 MeV protons. This is equivalent to 100,000 cyclotrons.

For example, such a D-³He reactor is roughly capable of burning all of the ⁹⁰Sr produced by a 1200 MW_{th} fission reactor in a year.

• The burning of 90 Sr (t_{1/2} = 28.82 y) via (p,n) reactions would result in the production of 90 Y (t_{1/2} = 64.06 hr) and 90m Y (t_{1/2} = 3.19 hr).

Potential Non-Electric Commercial Opportunities Associated with the Long Range Development of Fusion Electrical Power

	Near Term	Intermediate Term
Medical	 Isotope Production Cancer Therapy 	
Civilian Commercial Market	 Positron Emitter Production Proton Activation Analysis Gemstone Enhancement Neutron Radiography 	 Production of Tritium Neutron Irradiation Facility Production of Hydrogen
Environmental	- Detection of Chemical Spills	 Destruction of Fission Products
Defense	 Detection of Explosives Detection of Chemical Weapons 	 Destruction of Pu & Actinides Production of Tritium

Phased Approach to the Development of Safe, Clean and Economical Fusion Electrical Power Plants

Phase 3

Long Range Benefits of a Q >10 Device

- All of Phase 1
- All of Phase 2
- Small, Safe, Clean and Economical Electrical
 - Power Plants

Phase 2

Intermediate Term Application from a Q=1–5 Device

- All of Phase 1
- Destruction of Toxic Materials
- Space Power
- Propulsion Technologies
- Remote Electricity Stations

Phase 1

Near Term Application from a Q < 1 Device

- Medical Treatment
- Civilian Commercial Markets
- Environmental Restoration

Defense

Conclusions

- There is an immediate future (next 5-10 years) for commercial products from fusion.
- The unique energy and type of nuclear particles from the DT, DD, and D³He fuel cycle can produce products even though the confinement concept may be far below Q=1.
- One of the most promising products in the near term may be the production of radioisotopes.

Conclusions

• In the intermediate time range (20–40 years) non-electric applications related to the production of neutrons for irradiation damage studies, the destruction of fission wastes, or the production of hydrogen could become important.

 The fusion program must expand its horizons to new applications if it is to maintain public support for a 50+ year program to develop electric power plants.