Environmental, Safety, and Economic Studies of Inertial Fusion Power Plants

G. L. Kulcinski Director, Fusion Technology Institute University of Wisconsin-Madison

Presented to the Task Force on Fusion Energy Princeton Plasma Physics Laboratory April 29, 1999

Inertial fusion energy (IFE) power plants of the future will consist of four parts

Approximately 80% of the IFE Reactor Designs are 15 Years Old and Need to Incorporate Recent Target, Driver, and Chamber Improvements

- The level of research on IFE power plants has historically been much lower (by a factor of ≈ 10) than for MFE power plants
- In spite of the lower level of investment, there have been over 50 individual IFE power plants analyzed since 1972

Inertial Fusion Energy (IFE) Reactor Design Studies Project

Industrial/University Teams Sponsored by USDOE

Objective: Start: Finish:

SOMBRERO

laser

Evaluation of IFE for Electric Power Production October 1990 March 1992

W.J. Schafer Bechtel General Atomics Textron University of Wisconsin McDonnell Douglas Ebasco KMS TRW UCLA CFFTP / SPAR

OSIRIS heavy ion beam Prometheus-L laser

Prometheus-H heavy ion beam

IFE has potential advantages that could shorten the fusion energy development time and cost, with a more attractive final product

- Modularity of drivers allows one module to validate a full driver and will facilitate future power plant upgrades to higher output in stages
- Small confinement systems (targets) allow new targets to be innovated and tested relatively quickly
- Separation of driver, fusion chamber, and target injection systems allows significant development in parallel and will aid accessibility for future plant maintenance
- Beams can propagate in poor vacuum, which allows liquid chamber wall protection, reducing need for development of damageresistant materials
- IFE technology has significant spin-off and spin-back benefits
 - Advanced radiography
 - Laser cutting

- To uncover problems that exist at the interface between technologies
- To test innovative solutions to those problems and determine the effect of those innovations on the rest of the power plant
- To determine whether the innovative solutions improve or degrade the environmental, safety, and economic features of the power plant

Power Plant System Studies are NOT meant to:

- Determine accurate (i.e., $\pm 10\%$) absolute costs
- Be a ''blueprint'' for construction

There are 4 Current ICF Drivers

Heavy Ion Beam

Light Ion Beam

Z-Pinch – Energy application depends on finding a credible rep-rate concept

Light ion development currently on hold due to inability to focus adequately

Laser Fusion Reactors Have Evolved Over the Past 20 Years

	SOLASE	HYLIFE	Cascade	SOMBRERO	ΚΟΥΟ
Year Published	1977	1978	1983	1992 Kar	1993
Laser Laser Energy MI	το ₂				DPSSL A
		т.у	1.5		
Net Power, MWe	965	1010	800	1000	2840 (4 units)
Driver Eff., %	6.7	5	10	7.5	12
Illumination	quasi-sym.	2-sided	2-sided	symmetric	symmetric
Target Gain	150	400	200	118	150
Rep Rate, Hz	20	1.5	5	6.7	3
n, MW/m²	5	0.3	0.2	3.5	0.07
Th. Eff., %	43	39	55	47	43
Breeding Matl.	Li ₂ O	Li		Li ₂ O	PbLi
Structural Matl.	С	Steel	SiC	С	SiC

Heavy Ion Beam Fusion Reactor Designs Have Evolved Over the Past 15 Years

A Variety of Ion Beam Transport Schemes Have Been Investigated Which Could Apply to Light or Heavy Ion IFE Power Plants

Parameter	LIBRA	LIBRA-LiTE	LIBRA-SP
Year Published	1989	1991	1995
Focus Mechanism	Channel Transport	Ballistic	Self-Pinched
Net Electric Power, MWe	331	1000	1000
Li Ion Beam Energy to Target, MJ	4	6	7.2
Target Yield, MJ/Rep Rate, Hz	320/3	600/4	589/3.9
Coolant/Breeder	PbLi	Li	PbLi
First Wall Protection	SiC-INPORT	Steel-INPORT	Fan Spray Rigid Steel Tube
Secondary Heat Transfer Fluid	He	Organic	Не

Use 25–35 MeV Li ions from Helia type driver

The Environmental, Safety, and Economic Features of IFE Power Plants are Greatly Influenced by 3 Factors

Target Designs

• Driver Technology

Reactor Chamber Design

Baseline Target Gain Curves Were Used for the Last Laser Fusion Power Plant Designs

Input Energy (MJ)

Proposed high gain direct-drive laser fusion target design.

The National Ignition Facility and supporting OFES programs gives the U.S. a unique opportunity for world leadership in inertial fusion energy

- Demonstrate ignition and gain for both direct and indirect-drive
- Provide key data on target chamber and target fabrication technologies
- Confirm predictive target modeling capabilities

Recent Heavy Ion Beam Fusion Reactor Studies Have Used Conservative Gain Curves

Input Energy (MJ)

High gain (G > 50) target designs have been developed thru DOE-DP and DOE-OFES <u>sponsorship: indirect drive with heavy ions</u>

LLNL + LBNL

Callahan 3/99

Recent Light Ion Beam Fusion Reactor Studies Have Used Conservative Gain Curves

LIBRA Light Ion Targets are Spherically Symmetric and Use Internal Pulse Shaping

Pulsed-power high yield capsules are designed to the baseline NIF ignition capsule implosion criteria

Key Considerations for IFE Power Plant Designs

	Target
Lasers	 Best data base (30 kJ, 100 TW) Direct or Indirect Drive
Heavy lons	 Recent Target Designs Show High Gain Indirect Drive
Light lons	 Internal Pulse Shaping Targets Reduce Need for Beam Pulse Shaping Indirect Drive
Z Pinch	 Recent X-ray Production Experiments Encouraging (2 MJ, 300 TW) Indirect Drive

Characteristics of Drivers for Recent IFE Power Plant Designs

	Laser	HIB	LIB	Z-Pinch (estimated)
Energy - MJ/pulse @ ~300-500 TW	1-5	2-5	5-10	5-20
Driver Efficiency-%	>5	25-40	20-25	15-20
Efficiency to Capsule-%	>5	2-3	2-3	1-2
Total # Pulses	>10 ¹⁰	>10 ¹⁰	>10 ¹⁰	>10 ⁹
Current Status	•Glass ~ 40 kJ, 40 TW x-rays •KrF ~ 5 kJ •DPSSL ~ 0.1 kJ •NIF-1.8 MJ, 500 TW	•SLAC~10 ¹¹ pulses, 180 Hz •I _{inj} ~1 A	•Hermes ~ 300 kJ, 13 TW, 10 ⁻⁴ Hz •RHEPP-II~3 kJ, 120 Hz	•Z ~ 1.8 MJ, 280 TW x-rays, 2x10⁵ Hz

	Driver
Lasers	 NIF Will Give Reactor Level Energies (1.8 MJ, 500 TW)
	 SWL KrF/DPSSL Lasers Needed for Rep Rate
Heavy lons	RF or Induction Linacs Favored
	 Must Scale up to Higher Energy (both MJ and GeV)
Light lons	 "Inexpensive' Hermes Technology Demonstrated at Reactor Level Energies
	 Have Not Demonstrated Sufficient Beam Focusing and Purity
Z Pinch	"Inexpensive" Pulsed Power Demonstrated
	Rep Rated Coupling to Target Design Not Shown

Laser Driven Reactor Designs

Heavy Ion Beam Driven Reactor Designs

HIBALL (1981)

HYLIFE (1985)

PROMETHEUS-H (1992)

Three Light Ion Beam Propagation Schemes Have Been Utilized

LIBRA (1989)

Channel beam propagation Driver technology, HELIA Li + ions, 25-35 MeV Energy on target, 4 MJ Target gain, 80 Rep-rate, 3

LIBRA-Lite (1991)

Ballistic beam propagation Driver technology, HELIA Li + ions, 25-35 MeV Energy on target, 6 MJ Target gain, 100 Rep-rate, 3.9

LIBRA-SP (1995)

Self-pinched beam propagation Driver technology, HELIA Li + ions, 30 MeV Energy on target, 7.2 MJ Target gain, 82 Rep-rate, 3.9

Key Considerations for IFE Power Plant Designs

	Chamber				
Lasers	 Symmetric Illumination Favors Dry/Wetted Wall Approach With Gas Protection 				
Heavy lons	 2 Sided Indirect Drive Allows for Thick Free or Inhibited Flow Liquid Metallic/Molten Salt Protective Walls 				
Light lons	 Could Use Dry/Wetted/Liquid Walls With Gas Protection 				
Z Pinch	 Chamber Design Uncertain Until Rep Rated System Identified Shrapnel from Target Will be a Problem 				

Fireballs and Blasts in Gas Protected IFE Target Chambers

Issue: Target explosions generate fireballs in target chamber fill gases, which transmit a shock and a radiant heat pulse to target chamber structures. The strength of each can be adjusted with gas density and species.

Status: Radiation-hydro codes (BUCKY, RAGE, Lasnex) can model fireballs. UW Shock Tube simulates blast flow around target chamber structures (100 k\$/yr); is a testbed for structural response of target chamber. NRL laser generated blasts in the 80's validated BUCKY ion deposition in gases.

Needs: Shock Tube experiments to optimize flow around structures (100 k\$). High energy density fireball experiments on Z would simulate radiation driven fireballs (100 k\$). Species and gas density effects on radiation flow and shock strength would be tested. Need a sample large enough to be optically thick.

Fusion Technology Institute University of Wisconsin - Madison

Environmental Aspects of IFE Power Plants

- IFE and MFE have many attractive environmental features in common.
 - 1) Reduced land disruption to collect fuels and construction materials
 - 2) Less greenhouse gas emissions than fossil fuels
 - 3) Lower levels of long-lived radioisotopes than fission reactors
- There are 2 areas where IFE has unique features that could make it even more attractive environmentally.
 - 1) The ability to isolate the driver (e. g., laser, accelerator, pulsed power source, etc.) from the radiation source in the reaction chamber
 - 2) A more amenable geometry to use thick liquid walls in order to reduce the level of radiation damage, radioactivity, and volume of waste

There Are Two Ways to Use Liquids to Protect IFE Chamber Walls

The Use of Internal Liquid Walls Can Prolong the Life of a Steel First Wall

Recent Studies Have Concluded That the Safety of IFE Power Plants Can Be Superior to Today's Nuclear Facilities

- Favorable Attributes Are Due to the:
 - 1) Ability to isolate the drivers from the chamber
 - 2) Low overall power density \rightarrow low after-heat density
 - 3) General use of ceramic, non-volatile materials (with the exception of T_2)
 - 4) General use of low activation structural materials (C, SiC,...)
 - 5) Use of liquid metals (Li, Pb-Li, Flibe,...) in the chamber to lower the activity in the blanket
- Unique Areas That Require Continued Attention:
 - 1) T_2 inventory in target factory (could be on the order of 200-300 g)
 - 2) T_2 inventory in IFE blankets (currently ranges from 10 to 200 g)
 - 3) Activated target materials (could be as much as 50 tonnes/y)
 - 4) Pulsed neutron effect on increase in short lived activity

The Driver and Conventional Power Conversion Equipment Dominate the Capital Cost of IFE Power Plants

Example

	% of Total Capital Cost in Category				
	Driver	Chamber	Bldgs.	Heat Transfer/	Other
				Turbine/Electric	
SOMBRERO	31	9	15	34	11
OSIRIS	37	8	9	34	12

Conclusion: Highest leverage is gained through the driver. The cost of the chamber is only of secondary importance with respect to the capital cost.

IFE WILL REQUIRE TARGET DEVELOPMENT

- CURRENT ICF TARGETS COST ~\$500-\$2500 EACH DUE TO:
 - Few-of-a-kind designs constantly changing
 - Small scale production batches of ~5-25 targets
 - Extensive characterization each individual target has a "pedigree"

- $\begin{tabular}{ll} \hline \bullet & \end{tabular} IFE TARGETS MUST COST \leq 25 \end{tabular} EACH \end{tabular}$
- WHAT DEVELOPMENT IS NEEDED?
 - IFE target designs including fabrication considerations and tolerances
 - IFE-specific target fabrication development capsules, hohlraums, assembly, fill and layering, characterization

QTYUIOP

10⁴ REDUCTION IN HTGR FUEL PRODUCTION COST

- High-temperature gas-cooled reactor (HTGR) fuel has similarity to IFE capsules
 - Multiple layers of high and low density coatings
 - Stringent quality requirements
- Over 10¹¹ fuel particles have been produced in a small commercial production facility for Fort St. Vrain reactor
- Quality control was carried out by statistical means
 - Production yield was ~90%
- Cost reduction was ~10⁴ due to scale-up
 - Bench scale 20¢ per particle
 - FSV was less than 0.2¢ per particle
 - Projected commercial 0.002¢ per particle

HTGR fuel particle with 4 different coating layers

... Indicates that low cost IFE targets are not out of reach, but greater precision will be required

HTGR FUEL FABRICATION USED TECHNOLOGIES THAT CAN BE ADAPTED TO IFE TARGET PRODUCTION

- HTGR and ICF sphere forming technologies have similarities
- HTGR coating technologies may be adaptable to IFE needs
- Filling and DT layering is unique to ICF
- High-volume handling sorting, and quality control technologies may be adapted from industrial practices (semiconductors)

COST REDUCTION OF HTGR FUEL PARTICLES WAS SIGNIFICANT

 Past IFE Power Plant Studies Have Shown That The Predicted Cost of Electricity Can Be Reduced
 New IFE Designs Need to Incorporate the Progress of the Past Decade

IFE can be an attractive future energy source if it meets a number of criteria

- <u>Target gain and driver efficiency</u> high enough for <30% of power recirculated to driver (η G >7) [CoE increases 20% at η G = 5].
- <u>Low cost driver</u>: <\$1 B total capital cost [CoE increases 20% at \$2 B].
- <u>Low cost targets</u>: <30 cents/target [CoE increases 20% at \$1.1/target].
- <u>Lifetimes</u> for driver, chamber, final optics allowing >80% plant availability.
- <u>Radioactivity low</u> enough to avoid need for public evacuation plans (<1 REM site boundary dose in worst-case accidents), to avoid active safety systems, and to avoid high-level waste disposal (achieve Class C or better).
- <u>Affordable development</u>-driver test prototype <\$150 M hardware and ability to test fusion chambers at reduced scale(<1 m radius).

Phase-I R&D addresses critical issues for chamber and target technologies

Issue	Phase I Goals	Power Plant
High rep-rate chamber	Demonstrate drop clearing with1/4 scale single water jet, use models to determine clearing rate Test of liquid vaporization and condensation (100 kJ of x-ray on Z allows 0.1 scale)	5-10 Hz
First wall protection	Conduct scaled tests of oscillating liquid jets Validate fireball models and establish credibility of gas protection	Ablation of first wall materials prevented
Chamber neutron damage life	Use existing data and modeling to select best candidate materials	Life > few years
Optics survival	Estimate fused silica life using irradiated samples and modeling Determine viability of grazing incidence metal and liquid metal mirrors	Life >1 year
Target production	Fabricate a few prototype target components Explore/test individual production steps Identify scalable, low cost production methods	I-2 x 10 ⁸ per year < 30 cents/target
Target injection	Test room-temp surrogate targets at few Hz	5-10 Hz with cryo targets
Radioactive waste	Determine acceptable materials Develop recycling scenarios	Meet Class-C classification
Safety	Gather data on release fractions of critical isotopes and conduct safety analyses Designs for cl rem dose at site boundary	No evacuation plan .

07-00-0499-0945

IFE Power Plants Can Present Favorable Environmental, Safety, and Economic Features to Future Generations

• Engineers and scientists have used a great deal of innovation (in the limited number of IFE conceptual designs done to date) to solve the technical problems confronting them.

• It is too soon to decide on the final IFE driver/target/chamber configuration for power plants.

• There is a need to conduct small scale tests of the more promising IFE technologies such as liquid metal walls, final focusing mirrors & magnets, and chamber clearing concepts.