
Using Lunar Helium-3 to Generate Nuclear Power Without the Production of Nuclear Waste

G. L. Kulcinski Fusion Technology Institute University of Wisconsin-Madison

Presented at the 20th International Space Development Conference, Albuquerque NM, May 24-28, 2001.

The Public Developed a Resistance to Nuclear Power in the Late 20th Century

The resistance seems to be largely based on:

Fear of radioactivity releases
Uneasiness with long-term nuclear waste storage
Fear of proliferation of nuclear weapons grade material

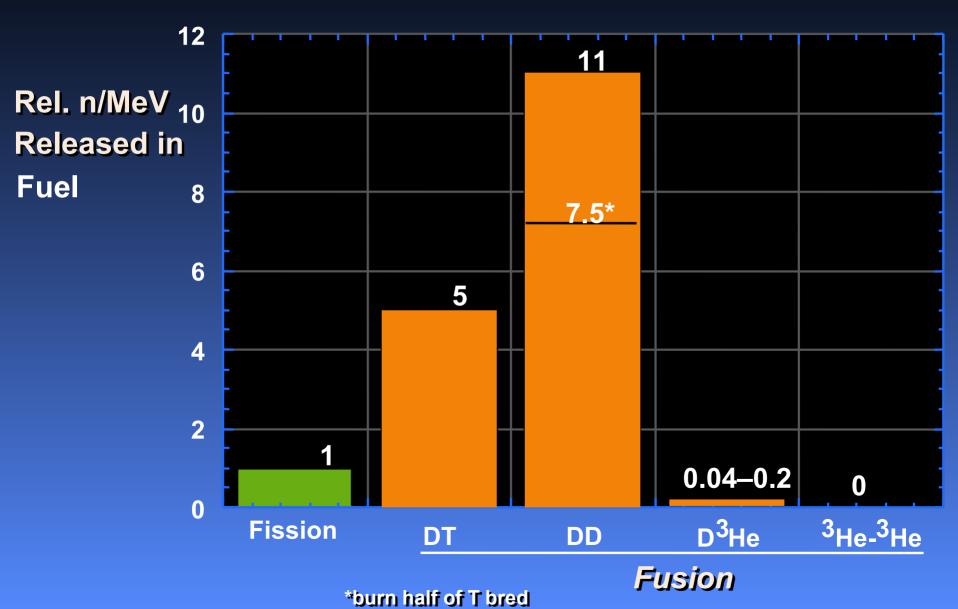
All of the above problems stem from the nuclear reaction:

Radioactive fuel
Radioactive reaction products
Neutrons

There Are 2 Main Nuclear Reactions to Release Energy

The 20th Century Approach to Fusion Only Partly Alleviates Public Concerns About Nuclear Power

Public Concern Radioactive Releases	How DT Fusion Addresses Concern Avoid runaway reactions and "meltdown" scenarios However, still have gigacuries in reactor in the event of an accident
Long Term Radioactive Waste Storage	Choice of fuel and structural material can reduce effective half life to < 100's years However, radiation damage and replacement of components can produce large volumes of radioactive waste
Proliferation	Reactor does not require fissile or fertile material However, excess neutrons can be used to breed fissile fuel


Fusion Can be Conveniently Divided into Three Eras

1st Generation D + T → n (14.07 MeV) + ⁴He (3.52 MeV) D + D → n (2.45 MeV) + ³He (0.82 MeV) {50%} → p (3.02 MeV) + T (1.01 MeV) {50%}

2nd Generation $D + {}^{3}He \rightarrow p (14.68 \text{ MeV}) + {}^{4}He (3.67 \text{ MeV})$

3rd Generation ${}^{3}\text{He} + {}^{3}\text{He} \rightarrow 2p + {}^{4}\text{He}$ (12.9 MeV)

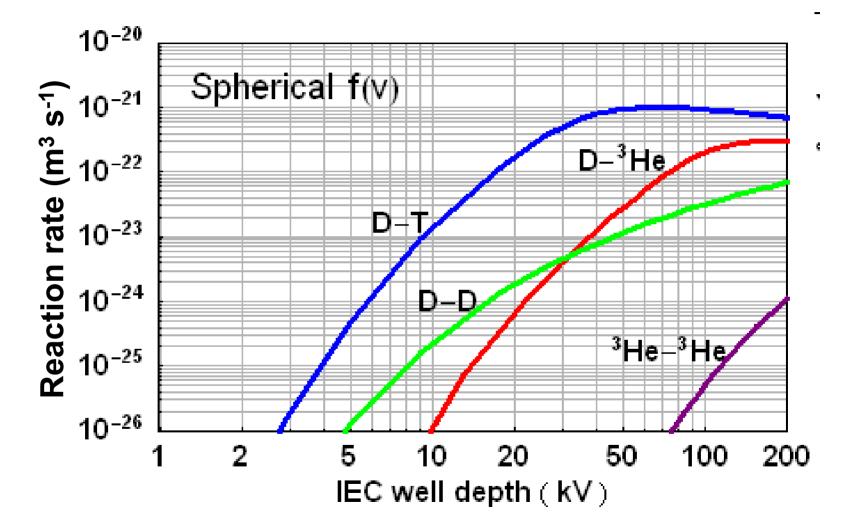
The Number of Neutrons Generated by Helium-3 Fusion Fuels is Very Small

The Use of 2nd and 3rd Generation Fusion Fuels Can Greatly Reduce or Even Eliminate Radioactive Waste Storage Problems

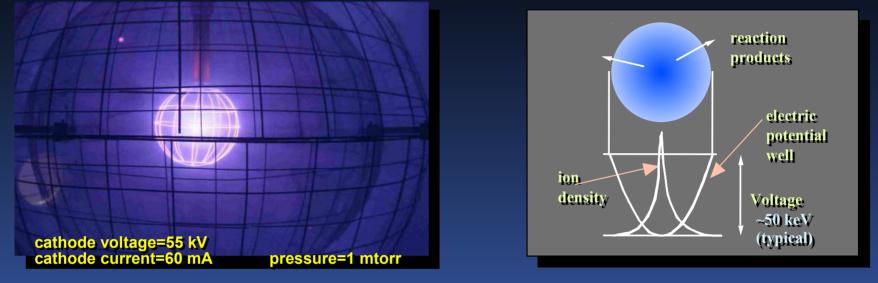
Class of Waste	Relative Cost of Disposal	LWR Fission (Once Through)	DT (SiC)	D³He (SiC)	³ He ³ He (any material)
		Relative Volun	ne of Operat	tion Wa	ste/GWe-y
Class A	1	several times Class C amount	several times Class C amount	0	
Class C	≈10				
Deep Geological (Yucca Mtn.)	≈1000				

Characteristics of D ³**He Fusion Power Plants**

- No Greenhouse or Acid Gas Emissions During Operation
- Very High Efficiencies (>70%)
- Greatly Reduced Radiological Hazard Potential Compared to Fission Reactors (<1/10,000)
- Low Level Waste Disposal After 30 y
- No Possible Offsite Nuclear Fatalities in the Event of Worst Possible Accident

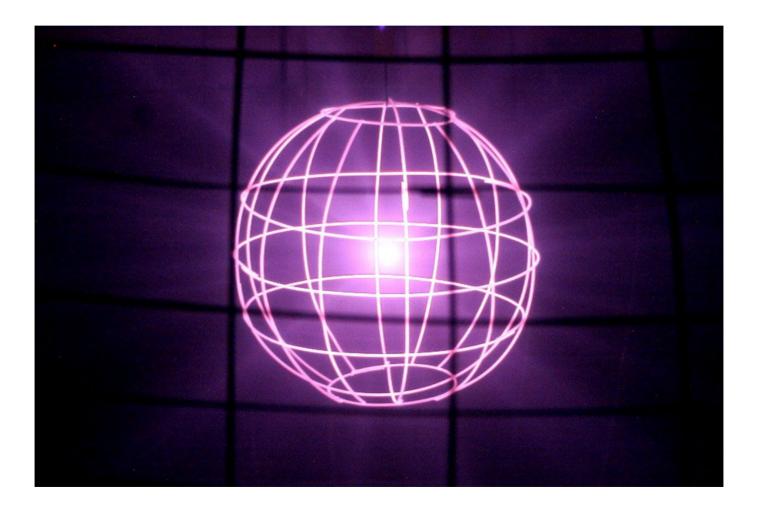

Characteristics of ³He³He Fusion Power Plants

• No Greenhouse or Acid Gas Emissions During Operation

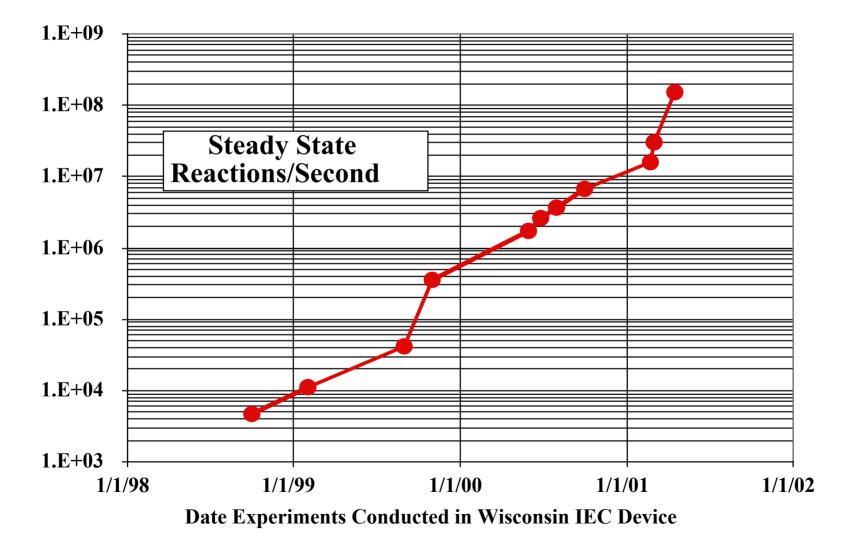

• Very High Efficiencies (>70%)

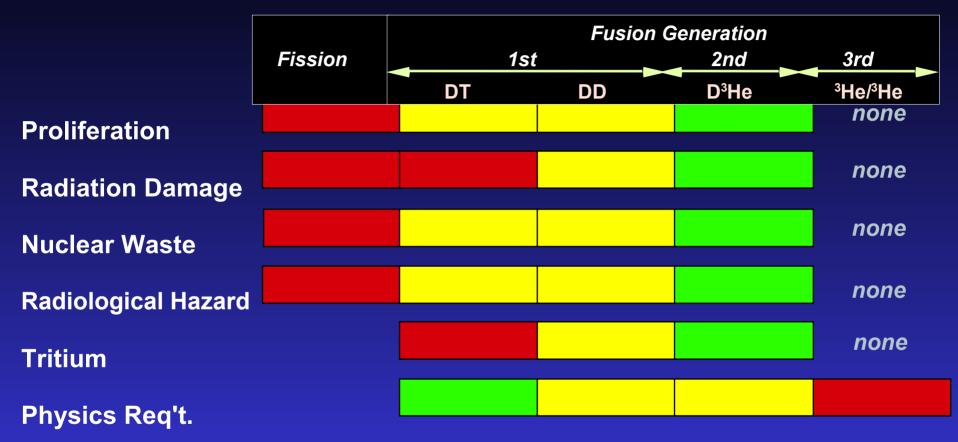

 No Residual Radioactivity After 30 Years of Operation (No Radioactive Waste, Radiation Damage, or Safety Hazard).

Fusion Reactivities for IEC Distributions



Steady State D ³He Reaction Rate Achieved in Wisconsin IEC Device




The Steady State D-³He Fusion Rate in the UW IEC Device is Now 1.5 x 10⁸ p/s (115 kV, 60 mA)

Significant Progress Has Been Made in Producing High Energy Protons from the D³He Reaction

Major Societal and Technical Concerns of Nuclear Energy Options

Hardest		Easiest
Major Problen	า	Minor Problem

Lunar Helium-3 Is Well Documented

- Helium-3 concentration verified from Apollo 11, 12, 14, 15, 16, 17 and U.S.S.R. Luna 16, 20 samples.
- Current analyses indicate that there are at least 1,000,000 tonnes of helium-3 imbedded in the lunar surface.

Significance of Lunar Helium-3

I tonne of He-3 can produce 10,000 MWe-y of electrical energy.

Columbia

40 tonnes of He-3 will provide for the *entire* U.S. electricity consumption in 2000.

MASA , IL, and , a ----

United States

There is 10 Times More Energy in the

Helium-3 on the Moon Than in All the Economically Recoverable Coal, Oil and Natural Gas on the Earth

The Development of the 2nd and 3rd Generation Fusion Fuels in the 21st Century Could Lead to Near Term, as Well as Long-Term Benefits to Society

Phase 3

Long Range Benefits of a Q>10 IEC Device

All of Phase 1

- All of Phase 2
- Small, Safe, Clean and Economical Electrical Power Plants

Phase 2

Intermediate Term Spinoff from a Q = 1–5 Device

- All of Phase 1
- Destruction of Toxic Materials
- Space Power
- Propulsion Technologies
- Remote Electricity Stations

Phase 1

Near Term Spinoff from a Q < 1 Device

- Medical Treatment
- Civilian Commercial Markets
- Environmental Restoration
- Defense

Applications

Near Term

- Medical Isotope Production
- Cancer Therapy
- Detection of Explosives
- Detection of Chemical Wastes

Mid-Term

- Destruction of Fissile Material
- Destruction of Radioactive Wastes

Long Range

- Small (50-100 MWe) Electrical Power Plants
 - Use of Advanced Fuels (Helium-3)
 - Space Propulsion
 - Base Load Electrical Power Plants
- Hydrogen Production
- Synthetic Fuel Production

