### Helium Implantation in Tungsten

### B.B. Cipiti & G.L. Kulcinski February 6, 2004 Fusion Technology Institute University of Wisconsin-Madison

### The Wisconsin IEC Team



### Helium Implantation in Tungsten at High Temperatures at the University of Wisconsin

- **Purpose:** To determine the effect of helium implantation on the surface morphology of tungsten at high temperatures
- Why? To see if tungsten can serve as a suitable material for the HAPL first wall
- How? Use high energy helium ions to bombard W while it is at temperatures typical of HAPL chamber



## UW IEC Chamber has Capability of High-Temperature Implantation at 10-150 kV





#### D<sup>+</sup>, 20 kV, 5 mA 2 mtorr, 1100 °C



### **HAPL Implantation Experiments**



### **Early Implantation Studies Cover a Limited Range of the Helium Energy Spectrum**

#### HAPL Debris Ion Energy Spectra





# The Helium Ions from a HAPL Target Have a Short Range in W

**Range of Helium Ions in Tungsten** 



# Threshold for Tungsten Pore Formation <1x10<sup>18</sup> He/cm<sup>2</sup> (30 keV He on W 7x10<sup>15</sup> ions/cm<sup>2</sup>-s)





### **Tungsten Pore Structure Stabilizes at** ~ $4x10^{18}$ He/cm<sup>2</sup> (30 keV He on W-7x10<sup>15</sup>ions/cm<sup>2</sup>-s)



### **Pore Diameter Increases with Increasing Fluence while Pore Density Decreases**

Pore Parameters vs. Helium Fluence 30 keV He on W (800-980 °C)



# Pore Size Increases with Temperature (40 keV He on W 5x10<sup>18</sup> ions/cm<sup>2</sup>)





## Pore Diameter Increases with Increasing Temperature while Pore Density Decreases

Pore Parameters vs. Temperature

40 keV, 5x10<sup>18 4</sup>He/cm<sup>2</sup> on W







- Threshold for pore formation in tungsten at 800 °C is < 1x10<sup>18</sup> He/cm<sup>2</sup> (30 keV)
- Pore diameter saturates at 0.15 µm and density saturates at 7 pores/µm<sup>2</sup> for 30 keV implantation at ~ 5x10<sup>18</sup> He/cm<sup>2</sup>
  - It might suggest that by 5x10<sup>18</sup> @ HAPL wall temperatures, an equilibrium surface condition will be attained
- Pore diameter increases by a factor of 6 and density decreases by factor of 35 when temperature increases from 730 to 1160 °C at 40 keV implantation
- Implantation energies from 20 to 60 keV showed no substantial difference in surface structure





- Repeat experiments with simultaneous deuterium implantation
- Determine density depth profile of helium in tungsten using elastic recoil detection
- Push towards higher energies (~100 keV)
- Consider implantation in W-Re alloy

# End of Talk

### **Preliminary Conclusions**



At 1100-1300 °C, 2x10<sup>19</sup> D+/cm<sup>2</sup> implantation produced no blistering At 1200 °C, 6x10<sup>18</sup> He<sup>+</sup>/cm<sup>2</sup> implantation produced "pinhole" porous surface structure At 1100 °C, 6x10<sup>17</sup> He<sup>+</sup>/cm<sup>2</sup> implantation produced helium bubbles that decorate the grain boundaries

Reference HAPL Chamber Operation for 3 Hours

10 um

Reference HAPL Chamber Operation for 3.5 Days Reference HAPL Chamber Operation for 8 Hours



#### Steady State D-<sup>3</sup>He Fusion in the UW IEC Device



M. Tomita & K. Masumori, Nuclear Instruments & Methods in Physics Research. (1989) **B39**, 95

## Helium Sputtering Yield on Tungsten

- Sputtering yield saturates at ~ 0.04 for 25 keV helium on tungsten at 1200 K
- Saturated yield is constant with temperature
- Assuming 1.7x10<sup>18</sup>
  <sup>4</sup>He/cm<sup>2</sup>/day (on the HAPL chamber), a sputtering yield of 0.04 would result in a loss of 3.9 μm/year (This is only due to the helium)





## Helium Implantation in Tungsten

B.B. Cipiti & G.L. Kulcinski February 6, 2004

Fusion Technology Institute University of Wisconsin-Madison

