

Tandem Mirror Materials Test Reactors of the Early 1980's

G. L. Kulcinski and J. F. Santarius March 12, 2009

Items to Cover

- Overview of Mirror Materials/Components Test Reactors
- TASKA
- TDF
- TASKA-M
- Comparisons of Previous Designs
- Implications for Today

For Fusion Technology

- Vibrant and aggressive fusion reactor design program in the U. S. (UWMAK series, Starfire, WITAMIR-1, HIBALL, MARS, etc.)
- Recognition by the fusion community that fusion materials could be the "Achilles Heel" of the Fusion Power Program.
- Ed Kintner the head of the DOE Fusion program (\approx 1978-1983) and a strong supporter of fusion materials work.
- Healthy Tandem Mirror program that is about to be killed (≈1986).

In the Early 1980's the Magnet Fusion Budget was Approaching \$500 M in Then-Year Dollars (About \$1 B in 2008 Dollars)

Tandem Mirror Fusion Neutron Test Facilities in the Early '80's

	TASKA	TDF	TASKA-M
Year Published	1982	1983	1984
Team	UW, KfK, et al.	LLNL, FEDC, TRW, Grumman, UW, et al.	UW, KfK, et al.
Туре	TM with separate thermal barrier & yin-yang plug cells	TM with combined thermal barrier and yin-yang plug cells	Axisymmetric central cell with sloshing ions plus yin-yang MHD anchors
Max n wall load	1.5 MW m ⁻²	1.4 MW m ⁻²	1.3 (0.6 ave.) MW m ⁻²
Test zone surf. A	7.8 m ²	~8 m ²	3.6 m ²
Fusion power	86 MW	20 MW	7 MW

Tandem Mirror Fusion Neutron Test Facilities in the Early '80's (cont.)

	TASKA	TDF	TASKA-M
Input power	117 MW	51 MW	40 MW
Input systems	NB/ICRF/ ECRF	NB/ECRF	NB/ICRF
Total length	60 m	24 m	24 m
Max B field	20 T	15 T	17.5 T
β(n region)	0.5	0.24	0.30

TASKA: Tandem Spiegelmaschine Karlsruhe

- When? 1981-2
- By Whom? UW-Madison, Kernforschungszentrum Karlsruhe, Interatom, Grumman, B&W, GA, HEDL, LLNL, Siemens
- Complete Publication: UWFDM-500/KfK 3311/1, June 1982
- http://fti.neep.wisc.edu/pdf/fdm500.pdf

TASKA: Tandem Spiegelmaschine Karlsruhe

TASKA: Tandem Spiegelmaschine Karlsruhe

The TDF Study

- When? 1982-3
- By Whom? LLNL, FEDC, TRW, General Dynamics, UW-Madison, Bechtel, SAIC, LANL, UCLA, MIT
- Complete Publication: UCID=19328, October, 1983

The TDF Study

TDF: Technology Demonstration Facility

TASKA-M

- When? 1983-84
- By Whom? UW-Madison, Kernforschungszentrum Karlsruhe, LLNL, HEDL, Univ of Karlsruhe, Univ. of Krakow,
- Complete Publication: UWFDM-600/KFK 3680, April 1984
- http://fti.neep.wisc.edu/pdf/fdm600.pdf

TASKA-M

The TASKA-M Test Modules Make the Best Use of a Compact Neutron Source

The Neutron Source Varies from 0.7 to Nearly 1.3 MW/m² in the Test Areas of TASKA-M (Note that the removal of the central module reduces the damage gradient)

NEUTRON WALL LOADING (MW/m²)_ -1.5 Blanket 3 Blanket 4 Blanket 1 Blanket 2 0.5 FIRST WALL RADIUS Area ICRF Antenno -200 -100 -300 100 200 300 0 z(cm)

NEUTRON WALL LOADING FOR TASKA-M

The Damage in TASKA-M Drops by a Factor of 5 in 20 cm From the First Wall

Ŵ	Materials Test Capabilities		
	Facility	dpa-l/FPY	
	TASKA	1,510	
	TASKA-M	530	
	INTOR	180	
	FMIT	5	
	RTNS-II	0.0003	

and a

TASKA, TDF, and TASKA-M Axial Profiles of Magnetic Field and Electrostatic Potential

TASKA: TM with separate thermal barrier & yin-yang plug cells

TDF: TM with combined thermal barrier and yinyang plug cells

TASKA-M: Axisymmetric central cell with sloshing ions plus yin-yang MHD anchors

Direct Cost of Materials Test Facilities in the Early 1980's is Consistent With Today's Estimates

Comparison of TASKA-M and Proposed GDT Neutron Test Facilities

	TASKA-M	DTNS GDT-3*	DTNS SC*
Туре	Axisymmetric mirror with sloshing ions plus yin-yang MHD anchor cells	GDT with sloshing ions, Cu insert in SC mirror coils	GDT with sloshing ions, superconducting mirror coils
Max n wall load	1.3 MW m ⁻²	2 MW m ⁻²	1.8 MW m ⁻²
Test zone area	3.6 m ²	1 m ²	~1 m ² (?)
Fusion power	7 MW	~10 MW	2-3 MW
Input power	40 MW	30 MW (+30 MW for Cu insert coils)	47 MW
Input systems	NB/ICRF	NB	NB
Total length	24 m	~10 m (?)	10 m
Max B field	17.5 T	26 T	13 T
β (n region)	0.3	~0.6	~0.6

* From Bagryansky, et al., Fus. Eng. & Design 70, 13 (2004).

Lessons Learned for Today

- Need for materials testing in 14 MeV spectrum has not changed, in fact it may be a show stopper in the development of fusion energy.
- Mirror-like test facilities do represent a viable solution given some serious physics and engineering attention.
- The community that knows most about the potential of Mirror –like DT reactors will not be around forever!

