Realizing the Benefits of Fusion Energy in Our Lifetime

G. L. Kulcinski

Director Fusion Technology Institute University of Wisconsin

Fusion Power Associates Annual Meeting October 19-21, 1999 Washington DC

Why Are We Concerned About the Timetable for Demonstrating Benefits from Fusion Energy?

- Commercial electricity from fusion is now perceived as being 50 years or more away
- Developing the first fusion reactor is a 20\$B+ program
- Keeping Americans' attention on a multi-billion, multi-decade project will be difficult

What Can We Do to Demonstrate Benefits from Fusing Plasmas on a Much Shorter Timeframe (≈5-10 years) and for Much Less Money (<<100 \$M)?

In the Near Term (where Q<<1), What Does the Fusion Community Have to Sell That is Unique?

• Portable Source of Neutrons

Non-proliferating technology, No fission products, Small source possible (few watts fusion power), Thermal to 14 MeV Energy

Portable Source of Protons

Up to 14 MeV Energy Little auxiliary radioactivity Competes with accelerators or cyclotrons

Portable Source of Electromagnetic Radiation

There are Several Useful High Energy Particles from the Most Promising Fusion Reaction

Particles Emitted/s per Watt of Fusion Power

Reaction	neutrons (MeV)	protons (MeV)	Helium atoms (MeV)
DT	3.6x10 ¹¹ (14.1)		3.6x10 ¹¹ (3.52)
DD	8.6x10 ¹¹ (2.45)	8.6x10 ¹¹ (3.01)	
D³He (100 keV)	5.3x10 ¹⁰ (2.45)	3.4x10 ¹¹ (14.7)	3.4x10 ¹¹ (⁴He, 3.67)
		4.4x10 ¹⁰ (3.01)	5.3x10 ¹⁰ (³ He, 0.82)
³ He ³ He		9.7x10 ¹¹ (~5.7)	4.9x10 ¹¹ (1.4)
n ¹¹ B			2 2x10 ¹² (2 9)

Potential Non-Electric Commercial Opportunities Associated with the Long Range Development of Fusion Electrical Power

	Near Term	Intermediate Term
Medical	 Isotope Production Cancer Therapy 	
Civilian Commercial Market	 Positron Emitter Production Proton Activation Analysis Gemstone Enhancement Neutron Radiography 	 Production of Tritium Neutron Irradiation Facility Production of Hydrogen
Environmental	- Detection of Chemical Spills	 Destruction of Fission Products
Defense	 Detection of Explosives Detection of Chemical Weapons 	 Destruction of Pu & Actinides Production of Tritium

What Use Can Society Make of Small, Compact (Q<1) Fusion Neutron or Proton Sources?

Neutron Applications	•Detection of Clandestine Materials •Trace Elements	PET Isotopes- ¹⁸ F	Isotopes- ⁹⁹ Mo	•Destruction of Fission Waste •Tritium Production
Proton Applications	PET Isotopes - ¹⁵ O, ¹¹ C, ¹³ N	PET Isotopes- ¹⁸ F	Isotopes- ^{99m} Tc	•Destruction of Long Lived Radioisotopes
Fusion Power Level	1–10 Watts	10 – 1000 W	1 – 100 kW	10 – 1000 MW

nearer term

Small Mobile PET Generators Could Reduce Radiation Exposure to Patients

- Presently ¹⁸F ($t_{1/2}$ = 1.83 h) is used extensively for brain scans
- Current regulations preclude the repeated use of ¹⁸F on young children and pregnant women
- An ideal PET isotope would be ${}^{15}O$ (t_{1/2} = 2.03 min)
- 1 Watt of D³He fusion could produce $\approx 8 \text{ mCi}$ of ¹⁵O (steady state)

The ¹⁸O(p,n)¹⁸F Cross Section Peaks Between 5–6 MeV

Cross Section (mb)

The ¹⁰⁰Mo(p,2n)^{99m}Tc Cross Section Peaks at the Energy of the D³He Proton

Proton Energy-MeV

Record Steady State D-³He Reaction Rate Achieved in Wisconsin IEC Device 1.5x10⁵ protons/s (14.7 MeV)

Record Steady State D-D Reaction Rate Achieved in Wisconsin IEC Device 2.2x10⁷ neutrons/s (2.45 MeV)

Radioisotopes Particularly Suited For Production With Protons From D-³He Fusion

Isotope	t _{1/2}	Parent Isotope	Maximum Steady State Production at Equilibrium (mCi/watt D- ³ He)	Useful Dose (mCi)
¹⁵ O	2.03 m	¹⁵ N	8	~ 1
¹⁸ F	1.83 h	¹⁸ O	14	1 – 10
^{99m} Tc	6.01 h	¹⁰⁰ Mo	4	1 – 25

Conclusions

• The U.S. fusion program could have a positive near term impact on the production of very short half life PET isotopes for applications in hospitals.

 Research into advanced fuel, very low Q fusion devices, is relatively inexpensive and could contribute to our understanding of the long-range potential of the "second generation" fusion fuels.