The Development of Lunar ³He Resources: Near Term Applications and Long Term Prospects

G.L. Kulcinski, R.P. Ashley, J.F. Santarius, G. Piefer, K.M. Subramanian

Fusion Technology Institute
Department of Engineering Physics
University of Wisconsin – Madison

The Helsotope is the Only Known Lunar Resource That Has Enough Economic Value to be Transported to the Earth

Annual World Energy Requirements

World Energy Consumption and Resources for the Future

Key Fusion Reactions and the Form in Which the Energy is Released

$$\mathbf{D} + \mathbf{T} \longrightarrow \mathbf{n} + {}^{4}\mathbf{He}$$
 17.6 MeV

$$\begin{array}{c|c}
\mathbf{D} + \mathbf{D} & \nearrow & \mathbf{n} + {}^{3}\mathbf{He} \\
& \mathbf{p} + \mathbf{T} & \mathbf{ave.}
\end{array}$$

2nd Generation D +
3
He \longrightarrow p + 4 He 18.4 MeV

3rd Generation
$${}^{3}\text{He} + {}^{3}\text{He} \longrightarrow 2p + {}^{4}\text{He}$$
 12.9 MeV

3
He $+$ 3 He

$$\rightarrow$$
 2p + 4 He

The Form of Energy Release is Quite Different in DT, DD, D³He and ³He-³He Fuel Cycles

Characteristics of D³He Fusion Power Plants

- No Greenhouse or Acid Gas Emissions During Operation
- Very High Efficiencies (>70%)
- Greatly Reduced Radiological Hazard Potential Compared to Fission Reactors (<1/10,000)
- Low Level Waste Disposal After 30 y
- No Possible Offsite Nuclear Fatalities in the Event of Worst Possible Accident

Characteristics of ³He³He Fusion Power Plants

 No Greenhouse or Acid Gas Emissions During Operation

• Very High Efficiencies (>70%)

• No Residual Radioactivity After 30 Years of Operation (No Radioactive Waste, Radiation Damage, or Safety Hazard).

If the Use of the D³He Fuel Cycle is So Attractive, Why Has it Not Been Pursued More Vigorously?

Physics Demonstration

• ³He Fuel Supply

Reactivities (ΣE_{fus}σν) versus IEC Well Depth

Schematic of Wisconsin IEC Advanced Fusion Device

Record Steady State D-³He Reaction Rate Achieved in Wisconsin IEC Device 2.6 x 10⁶ protons/s

Cathode Voltage=55 kV Cathode Current=60 mA Pressure= 1 mTorr

Wisconsin IEC Steady State Fusion Reactor

Progress in Advanced Fusion Fuel Research -Wisconsin IEC Facility

How Do We Get There From Here?

Traditional Energy Approach

What Use Can Society Make of Small, Compact (Q<1) Fusion Neutron or Proton Sources?

Neutron Applications	Detection of Clandestine Materials∙Trace Elements	PET Isotopes- ¹⁸ F	Isotopes- ⁹⁹ Mo	•Destruction of Fission Waste •Tritium Production
Proton Applications	PET Isotopes - 15O, 11C, 13N	PET Isotopes- ¹⁸ F	Isotopes- ^{99m} Tc	∙Destruction of Long Lived Radioisotopes
Fusion Power Level	1–10 Watts	10 – 1000 W	1 – 100 kW	10 – 1000 MW

Small Mobile PET Generators Could Reduce Radiation Exposure to Patients

- Presently 18 F ($t_{1/2} = 1.83$ h) is used extensively for brain scans
- Current regulations preclude the repeated use of ¹⁸F on young children and pregnant women
- An ideal PET isotope would be ^{15}O ($t_{1/2} = 2.03$ min)
- 1 Watt of D³He fusion could produce ≈8 mCi of ¹⁵O (steady state)

Radioisotopes Particularly Suited For Production With Protons From D-3He Fusion

Isotope	t _{1/2}	Parent Isotope	Maximum Steady State Production at Equilibrium (mCi/watt D-3He)	Useful Dose (mCi)
¹⁵ O	2.03 m	¹⁵ N	8	~ 1
¹⁸ F	1.83 h	¹⁸ O	14	1 – 10
^{99m} Tc	6.01 h	¹⁰⁰ Mo	4	1 – 25

The Development of the Right Fusion Concept Should Lead to Near Term, as Well as Long-Term Benefits to Society

Phase 3

Long Range Benefits of a Q>10 Device

- All of Phase 1
- All of Phase 2
- Small, Safe, Clean and Economical Electrical Power Plants
- Propulsion Technologies

Phase 2

Intermediate Term Application from a Q = 1-5 Device

- All of Phase 1
- Destruction of Toxic Materials
- Space Power
- Remote Electricity Stations

Phase 1

Near Term Application from a Q < 1 Device

- Medical Treatment
- Civilian Commercial Markets
- Environmental Restoration
- Defense

Economic Impact of D-3He

- One tonne of 3 He burned with 0.67 tonne of D can produce \approx 10,000 MW₂-y
- If that much electricity were produced from oil, it would require ≈130,000,000 barrels of oil
- At 20 \$/barrel of oil, this would cost \$2.6 B
 - ====> Therefore, the energy content in 1 tonne of 3 He is worth \approx \$2.6 B

- In 1999 the United States produced ≈ 420,000 MW₂-y of electrical energy
- This amount of electricity could be produced by 42 tonnes of ³He
- The value of 42 tonnes of 3 He is $\approx 100 B at \$20/barrel of oil

What Resources From Moon Can Have a Major Impact on Future Generations?

	Energy	Volatiles, Metals, and Minerals	
On Earth	• ³He • Microwaves from Solar Power	Probably None	
In Space	• ³ He • Microwaves from Solar Power • H ₂ -O ₂ , fuel cells	 Volatiles (H₂, N₂, O₂, CO₂, H₂O) Al, Fe, Ti, etc. Regolith 	
On the Moon	• ³He • Solar Energy • H ₂ -O ₂ , fuel cells	 Volatiles (H₂, N₂, O₂, CO₂, H₂O) Al, Fe, Ti, etc. Regolith 	

Conclusions

• The use of the D³He fusion fuel cycle can reduce the volume of radioactive waste by more than a factor of 100 when compared to a fission reactor.

 The use of the ³He³He fusion fuel cycle can eliminate the need for radioactive waste storage.

They Said It Couldn't Be Done

"Man will not fly for fifty years."
-Wilbur Wright, 1901

"Heavier-than-air flying machines are impossible." —Lord Kelvin, president, Royal Society, 1895

"There is not the slightest indication that [nuclear energy] will ever be obtainable. It would mean that the atom would have to be shattered at will." –Albert Einstein, 1932

"Anyone who looks for a source of power in the transformation of the [nucleus of the] atom is talking moonshine." –Ernest Rutherford, 1933

"Airplanes are interesting toys but of no military value." –Marshall Foch, future WWI French commander-in-chief, 1911

"Space travel is utter bilge." –Dr. Richard Wooley, Astronomer Royal, space advisor to the British government, 1956