The Development of Lunar ³He Resources: Near Term Applications and Long Term Prospects G.L. Kulcinski, R.P. Ashley, J.F. Santarius, G. Piefer, K.M. Subramanian Fusion Technology Institute Department of Engineering Physics University of Wisconsin – Madison # The Helsotope is the Only Known Lunar Resource That Has Enough Economic Value to be Transported to the Earth ## **Annual World Energy Requirements** # World Energy Consumption and Resources for the Future #### **Key Fusion Reactions and the Form** in Which the Energy is Released $$\mathbf{D} + \mathbf{T} \longrightarrow \mathbf{n} + {}^{4}\mathbf{He}$$ 17.6 MeV $$\begin{array}{c|c} \mathbf{D} + \mathbf{D} & \nearrow & \mathbf{n} + {}^{3}\mathbf{He} \\ & \mathbf{p} + \mathbf{T} & \mathbf{ave.} \end{array}$$ 2nd Generation D + 3 He \longrightarrow p + 4 He 18.4 MeV 3rd Generation $${}^{3}\text{He} + {}^{3}\text{He} \longrightarrow 2p + {}^{4}\text{He}$$ 12.9 MeV 3 He $+$ 3 He $$\rightarrow$$ 2p + 4 He # The Form of Energy Release is Quite Different in DT, DD, D³He and ³He-³He Fuel Cycles #### **Characteristics of D³He Fusion Power Plants** - No Greenhouse or Acid Gas Emissions During Operation - Very High Efficiencies (>70%) - Greatly Reduced Radiological Hazard Potential Compared to Fission Reactors (<1/10,000) - Low Level Waste Disposal After 30 y - No Possible Offsite Nuclear Fatalities in the Event of Worst Possible Accident ### Characteristics of ³He³He Fusion Power Plants No Greenhouse or Acid Gas Emissions During Operation • Very High Efficiencies (>70%) • No Residual Radioactivity After 30 Years of Operation (No Radioactive Waste, Radiation Damage, or Safety Hazard). # If the Use of the D³He Fuel Cycle is So Attractive, Why Has it Not Been Pursued More Vigorously? Physics Demonstration • ³He Fuel Supply ## Reactivities (ΣE_{fus}σν) versus IEC Well Depth # Schematic of Wisconsin IEC Advanced Fusion Device ## Record Steady State D-³He Reaction Rate Achieved in Wisconsin IEC Device 2.6 x 10⁶ protons/s Cathode Voltage=55 kV Cathode Current=60 mA Pressure= 1 mTorr #### **Wisconsin IEC Steady State Fusion Reactor** #### Progress in Advanced Fusion Fuel Research -Wisconsin IEC Facility #### How Do We Get There From Here? #### Traditional Energy Approach ## What Use Can Society Make of Small, Compact (Q<1) Fusion Neutron or Proton Sources? | Neutron
Applications | Detection of
Clandestine
Materials∙Trace Elements | PET
Isotopes- ¹⁸ F | Isotopes-
⁹⁹ Mo | •Destruction of
Fission Waste
•Tritium
Production | |-------------------------|--|-------------------------------------|--------------------------------|--| | Proton
Applications | PET Isotopes - 15O, 11C, 13N | PET
Isotopes-
¹⁸ F | Isotopes-
^{99m} Tc | ∙Destruction of
Long Lived
Radioisotopes | | Fusion Power
Level | 1–10 Watts | 10 – 1000 W | 1 – 100 kW | 10 – 1000 MW | ## Small Mobile PET Generators Could Reduce Radiation Exposure to Patients - Presently 18 F ($t_{1/2} = 1.83$ h) is used extensively for brain scans - Current regulations preclude the repeated use of ¹⁸F on young children and pregnant women - An ideal PET isotope would be ^{15}O ($t_{1/2} = 2.03$ min) - 1 Watt of D³He fusion could produce ≈8 mCi of ¹⁵O (steady state) # Radioisotopes Particularly Suited For Production With Protons From D-3He Fusion | Isotope | t _{1/2} | Parent
Isotope | Maximum Steady State Production at Equilibrium (mCi/watt D-3He) | Useful
Dose
(mCi) | |------------------------|-------------------------|-------------------|---|-------------------------| | ¹⁵ O | 2.03 m | ¹⁵ N | 8 | ~ 1 | | ¹⁸ F | 1.83 h | ¹⁸ O | 14 | 1 – 10 | | ^{99m} Tc | 6.01 h | ¹⁰⁰ Mo | 4 | 1 – 25 | ## The Development of the Right Fusion Concept Should Lead to Near Term, as Well as Long-Term Benefits to Society #### Phase 3 Long Range Benefits of a Q>10 Device - All of Phase 1 - All of Phase 2 - Small, Safe, Clean and Economical Electrical Power Plants - Propulsion Technologies #### Phase 2 Intermediate Term Application from a Q = 1-5 Device - All of Phase 1 - Destruction of Toxic Materials - Space Power - Remote Electricity Stations #### Phase 1 **Near Term Application from a Q < 1 Device** - Medical Treatment - Civilian Commercial Markets - Environmental Restoration - Defense ### Economic Impact of D-3He - One tonne of 3 He burned with 0.67 tonne of D can produce \approx 10,000 MW₂-y - If that much electricity were produced from oil, it would require ≈130,000,000 barrels of oil - At 20 \$/barrel of oil, this would cost \$2.6 B - ====> Therefore, the energy content in 1 tonne of 3 He is worth \approx \$2.6 B - In 1999 the United States produced ≈ 420,000 MW₂-y of electrical energy - This amount of electricity could be produced by 42 tonnes of ³He - The value of 42 tonnes of 3 He is $\approx 100 B at \$20/barrel of oil ## What Resources From Moon Can Have a Major Impact on Future Generations? | | Energy | Volatiles, Metals,
and Minerals | | |-------------|---|---|--| | On Earth | • ³He • Microwaves from Solar Power | Probably None | | | In Space | • ³ He • Microwaves from Solar Power • H ₂ -O ₂ , fuel cells | Volatiles (H₂, N₂, O₂, CO₂, H₂O) Al, Fe, Ti, etc. Regolith | | | On the Moon | • ³He • Solar Energy • H ₂ -O ₂ , fuel cells | Volatiles (H₂, N₂, O₂, CO₂, H₂O) Al, Fe, Ti, etc. Regolith | | ### **Conclusions** • The use of the D³He fusion fuel cycle can reduce the volume of radioactive waste by more than a factor of 100 when compared to a fission reactor. The use of the ³He³He fusion fuel cycle can eliminate the need for radioactive waste storage. ## They Said It Couldn't Be Done "Man will not fly for fifty years." -Wilbur Wright, 1901 "Heavier-than-air flying machines are impossible." —Lord Kelvin, president, Royal Society, 1895 "There is not the slightest indication that [nuclear energy] will ever be obtainable. It would mean that the atom would have to be shattered at will." –Albert Einstein, 1932 "Anyone who looks for a source of power in the transformation of the [nucleus of the] atom is talking moonshine." –Ernest Rutherford, 1933 "Airplanes are interesting toys but of no military value." –Marshall Foch, future WWI French commander-in-chief, 1911 "Space travel is utter bilge." –Dr. Richard Wooley, Astronomer Royal, space advisor to the British government, 1956