New Horizons for Fusion – Advanced Fuels for the 21st Century

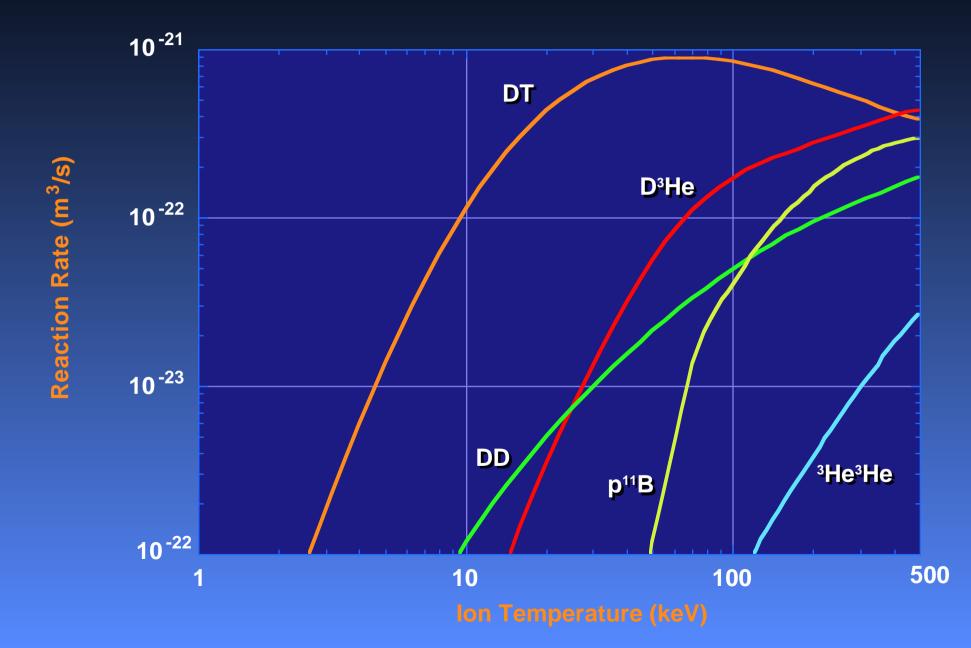
G.L. Kulcinski J.F. Santarius

Fusion Technology Institute University of Wisconsin

What Do We Mean by Advanced Fuels?

• Fusion fuels that emit few or no neutrons

• Not the DT or DD cycle (first generation)


• Most promising fuel cycle (second generation): D³He

• Future fusion fuel cycles-p¹¹B, ³He³He (third generation)

Key Fusion Reactions and the Form in Which the Energy is Released

1st Generation	$\mathbf{D} + \mathbf{T}$	\longrightarrow	n + ⁴ He	17.6 MeV
	D + D		$ \begin{array}{c} \mathbf{n} + {}^{3}\mathbf{H}\mathbf{e} \\ \mathbf{p} + \mathbf{T} \end{array} \right) $	3.65 MeV (ave.)
2nd Generation	D + ³ He	>	p + ⁴ He	18.4 MeV
3rd Generation	\mathbf{p} + ¹¹ \mathbf{B}	\longrightarrow	3 4 He	8.7 MeV
	³ He + ³ He	\longrightarrow	2p + ⁴ He	12.9 MeV


Maxwellian Fusion Reaction Rates

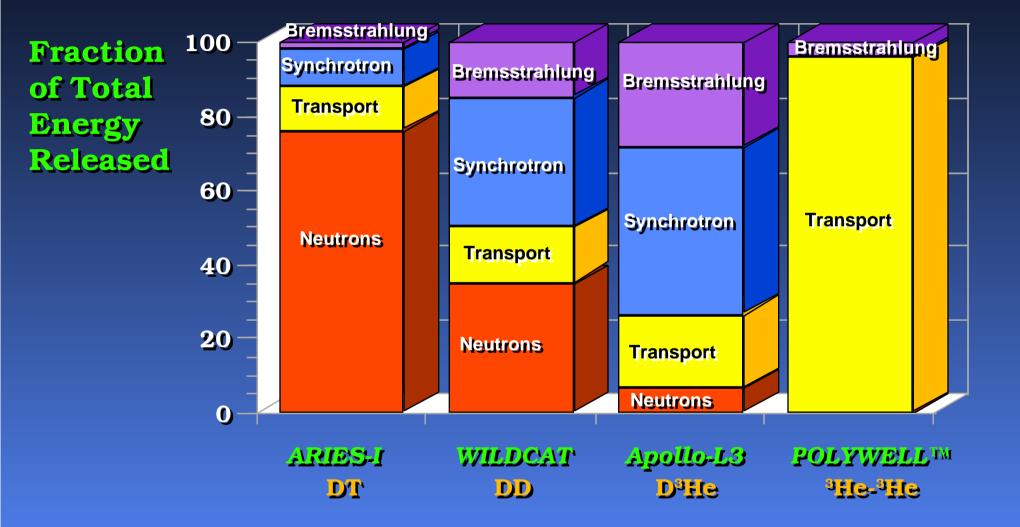
Where Might We Economically Burn the Advanced Fuels?

D ³ He	p ¹¹ B	³ He ³ He, p ⁶ Li
• FRC's		
 Spheromaks 		
Alliah Dowor Donoity	• Inertial Electrostatic	• Inertial Electrostatic
 High Power Density Tokamaks 	Devices	Devices
• RFP's	 Colliding Beams 	 Colliding Beams
 Inertial Electrostatic Devices 		
 Colliding Beams 		
 ICF/DT "Spark-plug" 		

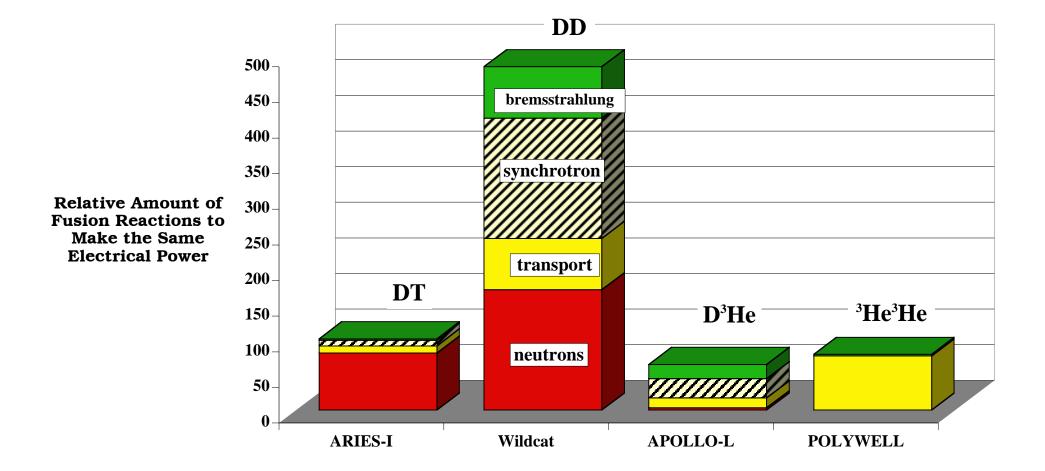
Reactivities (E_{fus} v) versus IEC Well Depth

Inertial Electrostatic Confinement Devices Have Already Been Operated With Non-DT Fuel

Previous IEC devices produced steady state DD fusion plasmas

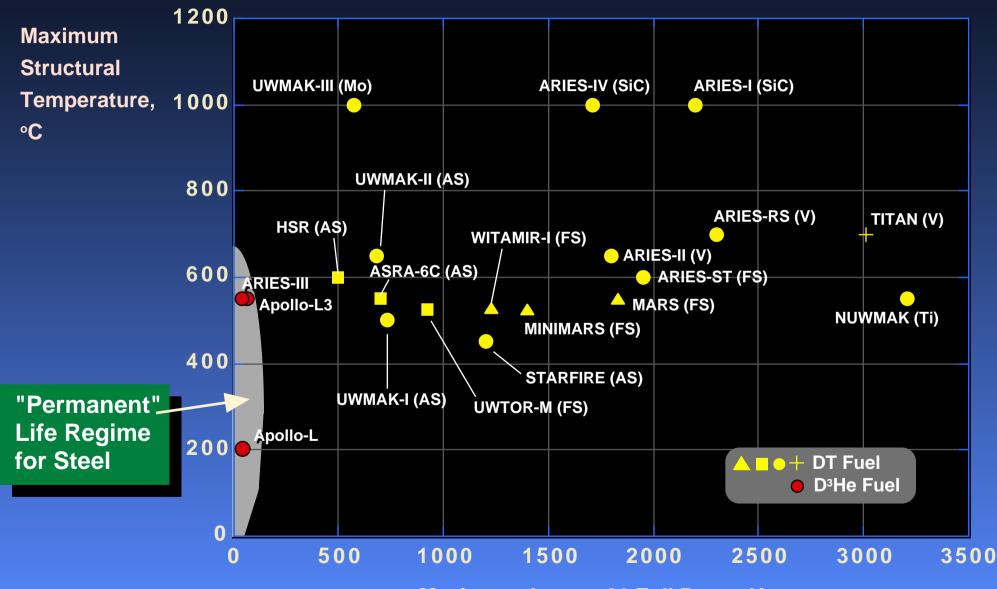

Illinois Inst. Tech. Univ. of Wisconsin Daimler-Benz Kyoto Univ. Univ. of Illinois INEL 5 x 10⁷ n/s @ 150 kV 1 x 10⁷ n/s @ 50 kV 5 x 10⁶ n/s @ 80 kV 5 x 10⁶ n/s @ 55 kV 1 x 10⁶ n/s @ 70 kV 3 x 10⁵ n/s @ 40 kV

 Recent tests at the Univ. of Wisconsin with advanced fuels have produced steady state D³He plasmas.


Preliminary Data

> 10³ p/s @ 45 kV

The Form of Energy Release is Quite Different in DT, DD, D³He and ³He-³He Fuel Cycles


The Amount and Form of Energy Required to Make Fusion Power is Quite Dependent on the Fusion Fuel Cycle

Why Consider the Advanced Fuels for Power Production?

Major Advantages	Major Disadvantages
• Significant reduction in radiation damage (<i>permanent first wall life</i>)	• Higher operating "temperature" (requires higher n values)
• Greatly reduced radioactivity (low level waste)	• Lower plasma power density or yield (<i>requires higher beta or r</i>)
• Potential for direct conversion (higher efficiency and lower waste heat)	• Fuel source - ³ He (<i>requires NASA collaboration</i>)

The Low Radiation Damage in D³He Reactors Allows Permanent First Walls to be Designed

Maximum dpa per 30 Full Power Years

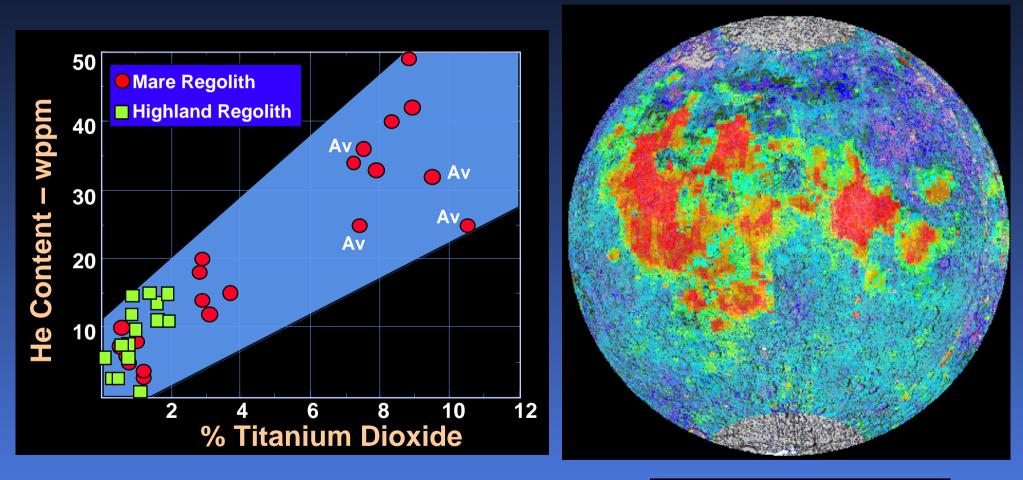
The Use of 2nd and 3rd Generation Fusion Fuels Can Greatly Reduce or Even Eliminate Radioactive Waste Storage Problems

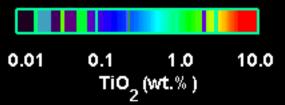
Class of Waste	Relative Cost of Disposal	LWR Fission (Once Through)	DT (SiC)	D³He (SiC)	p ¹¹ B ³ He ³ He, p ⁶ Li
		Relative Volume	e of Operation	n Waste/	GWe-y
Class A	1				
Class C	10				
Deep Geological (Yucca Mtn.)	1000				

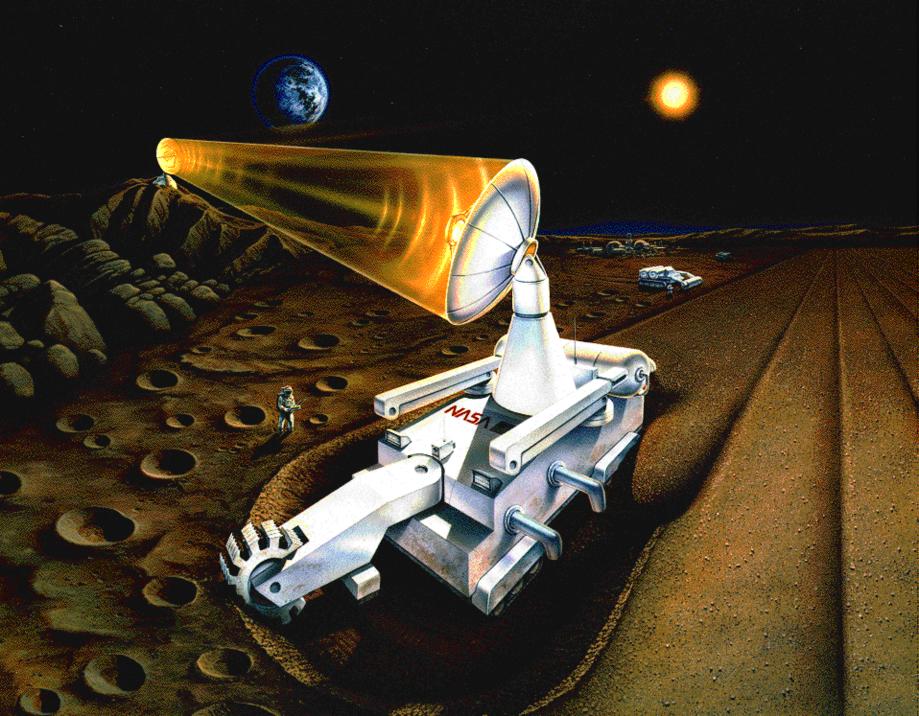
D-3He, Unlike D-T, Fuel Could Use the High Power Density Capability of Innovative Fusion Concepts

- Promising high-power-density concepts are under investigation; e.g., FRC, spheromak, ST, RFP, IEC.
- D-T fueled innovative concepts become limited by first-wall neutron or surface heat loads well before they reach β or B-field limits.
- D-T fueled, high- β innovative concepts optimze at B~3 T.
- D-3He needs a factor of ~ 80 above D-T fusion power densities.
 - Fusion power density scales as $\beta^2 B^4$.
 - Superconducting magnets can reach 20 T.
 - Potential power-density improvement by increasing B-field to limits is ~2000!

<u>_</u> CH	NOLOG,	-
	M	NS
Voisu	*	TUT
"w	SCONSI	4


D-3He Fuel Allows High-Power-Density Innovative Concepts to Use Their Full Capabilities


	D-T Tokamak	D-T FRC	D- ³ He FRC
Beta	0.05	0.67	0.67
Magnetic field on coil, T	18	2.3	8.2
First-wall radius, m	1.4	2	1.5
$2\pi R_0$ or Length, m	36	25	20
Fusion power, MW	2000	2000	2000
Neutron wall load, MW/m ²	5	5	0.2
Surface heat load, MW/m ²	1.3	0.09	2.9


Lunar Helium-3 Is Well Documented

- Helium-3 concentration verified from Apollo 11, 12, 14, 15, 16, 17 and U.S.S.R. Luna 16, 20 samples.
- Current analyses indicate that there are at least 1,000,000 tonnes of helium-3 imbedded in the lunar surface.

The Association of Helium with Ti in the Lunar Regolith Enables Us to Pick the First Potential Mining Site

Key Technological Features of Fusion Fuels

	1st Generation DT	2nd Generation D³He	3rd Generation ³ He ³ He, p ¹¹ B
Physics	Easiest	Harder	Hardest
	(10 keV)	(50 keV)	(200 keV)
First Wall Life	3–4 FPY's	Full Lifetime	Full Lifetime
(Matls. Dev. Prog.)	(extensive)	(small)	(off-the-shelf)
Radioactivity (vs. Fissio	on)		
after 1 day	same	3%	'None'
after 100 years	0.1%	0.003%	'None'
Electrical Efficiency	same	1.5–2 times	1–1.5 times
(vs. fission)		higher	higher

Conclusions

The use of advanced fusion fuels could revolutionize the Public's view of fusion power by:

- 1) eliminating one of the greatest barriers to public acceptance of nuclear power – the concern over radioactive waste and radioactivity releases
- 2) allowing off-the-shelf structural materials to be used, thus eliminating expensive neutron test facilities & long development times
- 3) eliminating T_2 breeding blankets and complicated secondary coolant loops
- 4) allowing high efficiency operation and inter-city siting of electrical power plants

Recommendations

- These compelling attractive features can only be achieved by a vigorous research program on magnetic, inertial electrostatic, and/or inertial fusion concepts specifically suitable for the burning of advanced fusion fuels.
- One of the metrics used to determine the attractiveness of fusion confinement concepts should be the ability to burn the advanced fusion fuels.