
5. Conclusions

Figure 9:  Simplified summary of the parameter regimes where 
different surface morphologies are observed.
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4.2 Blisters
•Key factor: mono-energetic ions
•Unlikely that fusion reactors’ plasma 
facing components (PFCs) will form 
blisters
•No second generation of blisters was 
observed.

Figure 8:  Progression from blisters to 
“grass” structure:  (a) initial sub-surface 
bubbles form, (b) trapped gas raises blister 
cap, (c) blister cap ruptures or erodes 
completely, and (d) “grass” morphology 
overwhelms depression left by blisters.

4.3 Mass Loss
Table 1: Measured mass losses 
extrapolated for fusion reactor full 
power days (FPD).

Figure 3:  Focused ion beam cross-section analysis of 
PCW samples irradiated to different fluences with 30 
keV He+ at 900 oC.

4. Discussion
4.1 “Grass” Structure
Factors that contribute to growth of “grass”
structure:
•Helium bubble movement
•Orientation dependence of sputtering yield

Figure 7:  PCW implanted to 6x1017 He+/cm2 at 900 oC 
(a) “grass” structure is distinct on each grain (b) close-
up on the “grass” structure at a grain boundary (c) 
cross-section of the sample reveals sub-surface pores
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1. Introduction

•Tungsten will be used as a  divertor 
plate material in ITER and was 
selected for the first wall armor of 
the High Average Power Laser 
(HAPL) chamber.

•The newly constructed Materials 
Irradiation Experiment (MITE-E) 
was used to irradiate polycrystalline 
tungsten (PCW) samples for this 
study.

•The MITE-E has improved current 
monitoring, temperature control, and 
dose rate variability as compared 
with previous devices used for 
materials tests at the UW-IEC.

2. Experimental Setup

Samples: electropolished PCW

Figure 1:  SolidworksTM model of the 
inside of the MITE-E vacuum vessel.

Features of the MITE-E:

•Ion gun: 8 mm diameter, normal 
incidence beam of 30 keV He ions; 
I= 75 µA
•Nd-YAG laser: additional sample 
heating

3. Results

3.1  Fluence Scan at 900 oC

Figure 2:  As fluence was increased on PCW samples 
irradiated with 30 keV He+ at 900 oC  the surface 
morphology changes became more severe—starting 
with (a) small pores and grain shifting, evolving to (b) 
blisters and pores, then (c) blister remnants and 
“grass,” and finally (d) “grass” alone.

Figure 4:  Fluence scan samples—mass loss increased 
with increased fluence

3.2 Temperature Scan at constant total 
fluence

Figure 5:  Results of the temperature scan with fluence 
of 3x1019 He+/cm2 and 30 keV He+ for all PCW 
samples. Different surface structures dominate at 
different temperatures (a) pitting (b) pitting (c) a 
mountainous structure and “grass” (d) “grass” only.

Figure 6:  Temperature scan samples—no clear trend 
of mass loss with increasing temperature*Corresponding author: 

lgarrison@wisc.edu
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•The angle of incidence of He 
bombardment of PCW greatly 
impacts the surface 
morphologies that develop.

•The grass structure is believed 
to be influenced by helium 
bubble movement and 
sputtering variation across 
grains.

•If fusion reactors experience 
mass loss near what was 
observed on the samples, it will 
make PFC lifetimes too short to 
be viable.
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