

*Research supported by the US Dept. of Energy under grant DE-FG02-04ER54745, the Grainger Foundation, and the Greatbatch Foundation

Modeling Two-Charge State Helium Plasmas^{*}

G.A. Emmert and J.F. Santarius

Fusion Technology Institute University of Wisconsin

14th US-Japan IEC Workshop University of Maryland Oct. 15-16, 2012

Why Model Helium?

- Greg Piefer used an IEC device to study ³He-³He fusion reactions.
- Studying Helium is a stepping stone on the way to modeling D-³He IEC plasmas.

Geometry

geometry can be planar, cylindrical, or spherical

GAE & JFS 2012

Basic Assumptions

- Background He gas
- Planar, cylindrical, or spherical symmetry
- Prescribed electrostatic potential profile
 Child-Langmuir or vacuum potential in intergrid region
 Flat in the cathode and source regions
- He⁺ and He²⁺ Helium ions ions enter from the source region
- He⁺ and He²⁺ are created in the intergrid and cathode regions by ion impact ionization, charge exchange, and stripping of fast ions colliding with the background He gas
- Interactions occur without momentum transfer between nuclei; daughter products travel at the same speed as parent
- Collisionless ion motion between interactions

- Single electron capture by He⁺ He⁺ + He \rightarrow He + He⁺
- Single ionization by He⁺ He⁺ + He \rightarrow He⁺ + He⁺ + e⁻
- Double ionization by He⁺ He⁺ + He \rightarrow He⁺ + He²⁺ + 2e⁻
- Stripping of He⁺ He⁺ + He \rightarrow He²⁺ + He + e⁻

He⁺ Cross Sections

THE UNIVERSITY

MADISO

- Single electron capture by He^{2+} $He^{2+} + He \rightarrow He^{+} + He^{+}$
- Double electron capture by He^{2+} $He^{2+} + He \rightarrow He + He^{2+}$
- Single ionization of He by He²⁺ He²⁺ + He \rightarrow He²⁺ + He⁺ + e⁻
- Double ionization of He by He²⁺ He²⁺ + He \rightarrow He²⁺ + He²⁺ + 2e⁻

He²⁺ Cross Sections

THE UNIVERSITY

MADISON

He⁺ phase space

He²⁺, He phase space

 $F_{zd}(r, E) \Delta E$ = current of species with charge z traveling in the "d" direction (inward, outward) at r and with total energy between E and E+ ΔE .

 $S_{zd}(r, E) \Delta E \Delta r =$ number of ions created with charge z traveling in the "d" direction between r and r+ Δr and with total energy between E and E+ ΔE .

E = Total Energy = Kinetic + Potential Energy

$$\frac{\partial F_{zd}(r,E)}{\partial r} = -n_g \sigma_z^{dest} F_{zd}(r,E) + S_{zd}(r,E)$$
$$S_{zd}(r,E') = n_g \sum_{w} \sigma_{zw}(T) F_{wd}(r,E)$$

E = total energy of the parent ion $T = E - e\phi(r)$ = kinetic energy of parent ion E' = total energy of the daughter ion

• The equations are solved numerically using the integrating factor to put the solution in the form

$$F_{zd}(r,E) = F_{zd}(s,E) \exp\left(-\int_{s}^{r} n_{g}\sigma_{z}^{dest}dr'\right) + \int_{s}^{r} S_{zd}(r',E) \exp\left(-\int_{r'}^{r} n_{g}\sigma_{z}^{dest}dr''\right) dr'$$

Since the sources depend on the F's, which you get by integrating over the sources, an iterative solution is necessary. We start with a delta function source at the anode streaming in with zero total energy; these represent ions produced in the filament-assisted discharge in the source region.

We then iterate until convergence of

$$\int \sum_{z,d} \sqrt{F_{zd}\left(r,E\right)} \, dr \, dE$$

- Spherical geometry
- Cathode radius = 10 cm
- Anode radius = 20 cm
- Cathode potential = -100 kV
- ⁴He gas at 3 mTorr
- Source region plasma = 50% He⁺, 50% He²⁺

He⁺ Energy Spectra at the Center

He²⁺ Energy Spectra at the Center

GAE & JFS 2012

Fusion Technology Institute, University of Wisconsin

16

He Atom Energy Spectra at the Center

- A code to model Helium discharges is being developed.
- It is based on a radius-energy phase space.
- Both He⁺ and He²⁺ charge states are included.
- The following reactions are included:
 - ➤ Single electron capture by He⁺ and He²⁺
 - ➢ Double electron capture by He²⁺
 - ➤ Single ionization by He⁺ and He²⁺
 - > Double ionization by He⁺ and He²⁺
 - Stripping of He⁺

- Use a hybrid approach model slow daughter ions with a Volterra equation and fast daughter ions with the (r, E) phase space formalism. This may lead to faster convergence of the iterative procedure.
- Include fast neutral atom reactions with the background gas in the (r, E) formalism.
- The hybrid approach can also be used with molecular deuterium ions in VICTER.

Thank you for your attention.

