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The Goal of this Research 

• Understand the role of atomic physics on the flow of 
ions in gridded spherical IEC devices 

• Develop a model to predict the performance of these 
devices 
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IEC Model 
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Charge Exchange Produces Fast Atoms 
and Cascading Down of the Ion Energy 
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Basic Assumptions of the Model 

• Background D2 gas 
• Deuterium ions (no molecular ions) 

– Collisionless motion except for charge exchange
and ion impact ionization interactions 

• Fast deuterium atoms 
– Collisionless motion 

• Prescribed electrostatic potential profile 
– Child-Langmuir or vacuum in intergrid region 
– Flat in the cathode region 

• Spherical symmetry – ignore stalk and defocusing 
• Electron – atom interactions neglected. 
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Formalism 

• Cold ion source function = S(r) 
• Attenuation function = g(r, r′ ) 

• Ion flux dΓ(r) at r due to ions born at r′ 
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Particle Conservation in 
the Intergrid Region 
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A(r) = cold ion source due to ions from the anode 

Sum over all generations of cold ions and all ion 
passes 
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Kernel relates the Source at one Radius 
to the Source at another Radius 
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Solution Method 

• Set up a mesh in the intergrid region (the Volterra 
equation is only defined there) 

• Calculate 
region numerically and in the cathode region 
analytically 

• Solve the Volterra equation by finite difference 
methods 

the attenuation coefficients in the intergrid 
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Given S(r) We Can Calculate:

• Energy spectrum of the fast ion flux, fi(r,E)

• Energy spectrum of the fast neutral flux, fn(r,E)

• Ion current collected by the cathode

• Neutron production rate

• etc
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The “Catch”

• The ion current Γ0 leaving the anode is unknown 
experimentally and therefore is an adjustable 
parameter.

• We adjust it to match the calculated cathode current 
with the measured value.

• We then compare calculated and measured neutron 
generation rates.
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Example Calculation

Input:  
Cathode voltage 166  kV
Gas pressure 2  mTorr
Inward anode current 12.3 mA

Cathode Current:
energetic ion current striking cathode 16.4 mA
cold ion current striking cathode 23.7 mA
secondary electron emission 27.8 mA

Total Cathode Current 68 mA
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Example Calculation - II

• Neutron Generation (model)
– by ion-gas fusion 8.1 x 106 n/s
– By fast atom-gas fusion 3.8 x 107 n/s
– Total 4.6 x 107 n/s

• Neutron Generation (exp.) 1.8 x 108 n/s

Neutron generation processes not calculated:
Ion-ion fusion
Implantation in cathode grid



GAE 2005 Fusion Technology Institute 15

Cold Ion Source Function
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Energy Spectrum at Cathode
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Voltage Scan
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Pressure Scan
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Current Scan
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Conclusions

• The model reproduces the general trends of neutron 
production rate with changes in cathode current, 
cathode voltage, and gas pressure.

• The calculated neutron production rates are close to 
the measured values at low voltage and about a factor 
of 4 low at high voltage. 
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Possible Improvements

• Add molecular effects
• Calculate potential profile self-consistently
• Add potential “hill” in the cathode region
• Add multi-species, e.g. D-3He
• Other suggestions?
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