Atomic Physics Effects on IEC Ion Radial Flow

G.A. Emmert & J.F. Santarius Fusion Technology Institute University of Wisconsin 7th US-Japan Workshop on Inertial Electrostatic Confinement Fusion Los Alamos, NM, March 14-16, 2005

- Understand the role of atomic physics on the flow of ions in gridded spherical IEC devices
- Develop a model to predict the performance of these devices

IEC Model

Charge Exchange Produces Fast Atoms and Cascading Down of the Ion Energy

Ionization Produces Cold Ions without Loss of Energy

Basic Assumptions of the Model

- Background D₂ gas
- Deuterium ions (no molecular ions)
 - Collisionless motion except for charge exchange and ion impact ionization interactions
- Fast deuterium atoms
 - Collisionless motion
- Prescribed electrostatic potential profile
 - Child-Langmuir or vacuum in intergrid region
 - Flat in the cathode region
- Spherical symmetry ignore stalk and defocusing
- Electron atom interactions neglected.

Formalism

- Cold ion source function = S(r)
- Attenuation function = g(r, r')

$$g(r,r') = \exp\left(-\int_{r}^{r'} n_g \sigma_{cx}(E(r''))dr''\right)$$

gas density charge exchange cross-section

• Ion flux $d\Gamma(r)$ at *r* due to ions born at *r*'

$$r^2 d\Gamma(r) = r'^2 g(r, r') S(r') dr'$$

Particle Conservation in the Intergrid Region

Sum over all generations of cold ions and all ion passes

$$S(r) = A(r) + \int_{r}^{\text{anode}} K(r, r')S(r')dr'$$

A(r) = cold ion source due to ions from the anode

Kernel relates the Source at one Radius to the Source at another Radius

- Set up a mesh in the intergrid region (the Volterra equation is only defined there)
- Calculate the attenuation coefficients in the intergrid region numerically and in the cathode region analytically
- Solve the Volterra equation by finite difference methods

- Energy spectrum of the fast ion flux, $f_i(r, E)$
- Energy spectrum of the fast neutral flux, $f_n(r, E)$
- Ion current collected by the cathode
- Neutron production rate
- etc

- The ion current Γ_0 leaving the anode is unknown experimentally and therefore is an adjustable parameter.
- We adjust it to match the calculated cathode current with the measured value.
- We then compare calculated and measured neutron generation rates.

Example Calculation

Input:	
Cathode voltage	166 kV
Gas pressure	2 mTorr
Inward anode current	12.3 mA
Cathode Current:	
energetic ion current striking cathode	16.4 mA
cold ion current striking cathode	23.7 mA
secondary electron emission	27.8 mA
Total Cathode Current	68 mA

Example Calculation - II

- Neutron Generation (model)
 - by ion-gas fusion
 - By fast atom-gas fusion
 - Total

8.1 x 10⁶ n/s
3.8 x 10⁷ n/s
4.6 x 10⁷ n/s

• Neutron Generation (exp.) $1.8 \times 10^8 \text{ n/s}$

Neutron generation processes not calculated: Ion-ion fusion Implantation in cathode grid

Cold Ion Source Function

Energy Spectrum at Cathode

Voltage Scan

Pressure Scan

Current Scan

- The model reproduces the general trends of neutron production rate with changes in cathode current, cathode voltage, and gas pressure.
- The calculated neutron production rates are close to the measured values at low voltage and about a factor of 4 low at high voltage.

Possible Improvements

- Add molecular effects
- Calculate potential profile self-consistently
- Add potential "hill" in the cathode region
- Add multi-species, e.g. D-³He
- Other suggestions?

Thanks to the experimental group, especially Alex Wehmeyer, for sharing their experimental data.