

Objectives:

- Develop a gaseous target for the production of PET radioisotopes from an isotopic source of 14.7 MeV D-³He fusion protons
- Evaluate gaseous target performance in combination with an Inertial Electrostatic Confinement (IEC) fusion device
- Determine required D-³He fusion rates for medically usable quantities of ¹¹C

Medical Imaging: **Positron Emission** Tomography (PET)

- PET is a current medical technique used to image abnormalities and dynamic processes inside the body
- Shorter half-life isotopes reduce the dose to high risk patients, but requires isotope production be within close proximity to the patient

Properties of Common Radioisotopes for PET ¹					
Isotope	Production Reaction	Isotope Half-life	Maximum β ⁺ Energy	Radiopharmaceutical compounds	Approxima Dosage
¹¹ C	14 N(p, α) 11 C	20.4 min	960 keV	Carbon dioxide	2-10 mCi (74-370 MB
	${}^{10}B(d,n){}^{11}C$			Hydrogem cyanide	
	${}^{11}B(p,n){}^{11}C$			Methane	
¹³ N	$^{16}O(p,\alpha)^{13}N$	9.97 min	1.19 MeV	Ammonia	10-15 mC
	$^{12}C(d,n)^{13}N$			Nitrogen oxide	(370-555 MI
¹⁵ O	$^{15}N(p,n)^{15}O$	2.05 min	1.72 MeV	Water	1 mCi
	$^{14}N(d,n)^{15}O$			Carbon dioxide	(37 MBq)
¹⁸ F	$^{18}O(p,n)^{18}F$	109.8 min	635 keV	Fluorodeoxyglucose	2-10 mCi
	20 Ne(d, α) 18 F			Fluoridic acid	(74-370 ME

1. A. OWUNWANNE, M. PATEL, and S. SADEK (1995). The handbook of radiopharmaceuticals. London New York: Chapman & Hall Medical

Production of Radioisotopes from D-³He Fusion Devices Brian J. Egle and Gerald L. Kulcinski Fusion Technology Institute – University of Wisconsin, egle@wisc.edu

• Cipiti-2004 in independent experiments produced 1.0 nCi of ¹³N at 4 x 10⁶ p/s and 1.5 nCi of ^{94m}Tc at the UW IEC facility ³

2. J.W. WEIDNER, (2003). The production of N-13 from inertial electrostatic confinement fusion. (M.S. dissertation, University of Wisconsin - Madison). 3. B.B. CIPITI, (2004). The fusion of advanced fuels to produce medical isotopes using inertial electrostatic confinement. (Doctoral dissertation, University of Wisconsin - Madison).

- Titanium chosen as a balance of low proton attenuation and high mechanical strength
- Baseline design (0.5 mm Ti, 4 atm) had a calculated safety factor of 2
- Small prototype tested to 7 atm

Multiplication factor, M, versus Ti foil thickness with the pressure held at 4 atm and target depth at 77.5 mm

Conclusions:

 400 nCi of ¹¹C is achievable at present laboratory scale IEC fusion rates

• A D-³He fusion rate of approximate 1 x 10¹² p/s would activate1 mCi of ¹¹C