ABSTRACT

A tritium-breeding blanket design 1s investigated
for a D-T Field-Reversed Configuration (FRC)
scoping study.

The thrust of our initial effort on the blanket has
been to seek solutions as close to present-day
technology as possible, and we have therefore
focused on steel structure with helium coolant.
The simple FRC cylindrical geometry has allowed
us reasonable success due to the low FRC
magnetic field and relatively easy maintenance.

In this design the breeder 1s Li120 tubes.

The design is modular with 10 modules each 2.5
m long.

The inner radius of the first wall 1s 2.0 m and the
FW/blanket/shield thickness is about 2 m.

The surface heat flux will be radiation dominated,
fairly uniform, and relatively low, because most of
the charged particles follow the magnetic flux
tubes to the end walls.

The neutron wall loading 1s 5 MW/m2. In this
design the surface heat flux equals 0.19 MW/m?2.
I'he maximum L120 tube temperature 1s 1003°C.
The helium exit temperature from the heat
exchanger 1s about 800°C which allows a thermal
efficiency of about 52%.

The local trittum breeding ratio (TBR) equals 1.1
and 1s sufficient because in the FRC geometry the
plasma has nearly full coverage.

T'he helium pumping power 1s 1 MW.

T'he coolant routing 1s optimized to limit the steel
maximum temperature to 635°C. The same concept
would be applicable to a spherical torus and
spheromak.

‘ FRC GENERAL FEATURES

The FRC design is modular with alength/module
of 2.5 m.

The total number of modulesis 10.

The solid breeder is Li,0 in the shape of tubes of
90% theoretical density.

The cylindrical geometry of the FRC blanket
(unlike the tokamak blanket) allows straight Li,0
tubes to be used.

The coolant and the purge gasis helium at an
average presaure of 18 MPa.

In the first zone a single size Li,0 tube is used.
The blanket consists of two zones, blanket-1 and
blanket-I1, separated by two rows of steel tubes
The size of the L1,0O tubesin different zones s
determined mainly by the temperature limits on
the Li,0O solid breeder.

The recommended maximum allowable
temperature of the Li,O solid breeder is 1000°C
for sintering and the minimum allowable
temperature is 400°C for tritium retention.

The steady state nuclear heating in the different
zones is calculated with an average neutron wall
loading of 5 MW/m?Z.

The surface heat flux is 0.19 MW/n?.

Thelocal trittum breeding ratio (TBR) equals 1.1

and is sufficent becausein the FRC geometry the

plasma has full coverage.
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FRC GENERAL PARAMETERS

Module

Length (m)
Number of modules

First zone

1- First Wall (steel)

Radius from the center of the plasma (m)
Outer tube diameter (mm)

Thickness of steel tube (mm)

Surface heating (MW/m?)

Heating in solid steel (W/cm?d)

2- First Li,O zone

Number of rows

Width (m)

Percentage of Li,0O (without stedl)
Percentage of He (without stedl)

Outer tube diameter (mm)

Average heating (L1,0 +He) (W/cm?)
Average heating in solid Li,0 (W/cm?d)

3- Second Wall (steel)

Outer tube diameter (mm)
Thickness of steel tube (mm)
Heating in solid steel (W/cm?d)

Blanket-1 & Blanket-1|

Percentage of steel

Percentage of Li,0O (without stedl)
Percentage of He (without stedl)

a Blanket-|

1- Wall-1 (stedl)

Number of rows

Outer tube diameter (mm)

Thickness of steel tube (mm)

Heating in solid steel (W/cm?d)

2- First Li,O zone

Thickness (m) 0.535

Average heating (Li1,0 +He) (W/cm?)
Average heating in solid Li,0O (W/cm?d)
3- Wall-I1 (stedl)

Number of rows

Outer tube diameter (mm)

Thickness of steel tube (mm)

Heating in solid steel (W/cm?d)

b- Blanket-I|

1- First Li,O zone

Thickness (m)

Average heating (Li1,0 +He) (W/cm?)
Average heating in solid Li,0O (W/cm?d)
2- Wall-11 (stedl)

Number of rows

Outer tube diameter (mm)

Thickness of steel tube (mm)

Heating in solid steel (W/cm?d)

Shield

Thickness (m)

Percentage of steel

Percentage of He

Average heating (W/cm?)

2.50
10

2.0
15
2.5
0.2
38.43

0.1575
30%
70%
315
13.04
33.12

15
2.5
24.88

8.3%
40%
60%

50
14.1
15.8

2.3
2./5

50
14.1
1.0

0.535
0.13
0.325

50
14.1
0.07

0.60

90%
10%
0.028
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Maintenance Scheme for FRC
Using a Telescopic Vacuum Vessel
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Temperature Distribution in Li20 Tubes in the First Zone (Max, Temp.)
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TEMPERATURE DISTRIBUTION IN FIRST ZONE Li20
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The steady state thermal load per module, helium cool ant
mass flow, and helium coolant average velocity

¥ Zone Total heating He mass flow rate He velocity
(MW) (kg/s) (m/s)

First zone
First wall (steel) 15.7 20.17 26.4
First Li,O zone67.55  48.38 3.44
Second wall (steel) 6.14 7.89 9.22
Blanket-I

o Wall-I (steel tubes) 34.7 44.57 18.06
Li,0 48.76 31.32 0.68

o Wall-Il (steel tubes) 2.2 2.82 1.14
Blanket-11
Li,O 3.41 2.19 0.039

o  Wall-Ill (steel) 0.15 0.2 0.078
Shield
Bulk (stedl) 0.64 0.83 0.0046
Total 180 76.5

SUMMARY AND CONCLUSIONS

« The relative ease of mantenance and the use of Steel
structure with reasonable thermal efficiency (52%) are
assumptions that make it a credible and attractive design.

 The resulting

compact FRC fusion core of the reference

case conceptual design possesses a high ratio of eectric
power to fusion core mass, Indicating that it would

certainly have

favorable economics.

* The cylindrical geometry and low magnetic field allow
removal of single modules containing the first wall,
blanket, snield and magnet.

* The same concept would be applicable to a spherical Torus
and spheromak.






