Experimental study of the interaction of a planar shock with a free rising bubble

Devesh Ranjan, John Niederhaus, Mark Anderson, Bradley Motl, Jason Oakley, Riccardo Bonazza

University of Wisconsin-Madison

bonazza@engr.wisc.edu

Jeffrey Greenough Lawrence Livermore National Laboratory greenough1@llnl.gov

July 18, 2006

10th International Workshop on the Physics of Compressible Turbulent Mixing

Paris, France

Work supported by US DOE under Grant # DE-FG52-03NA00061

Previous experimental studies:

- Bubble gases: He, Ar, Kr, R22
- Density contrast: -0.75 \leq At \leq 0.5
- Shock strengths: $1.05 \le M \le 4$
- Film material

Previous numerical studies:

- Euler equations
- 2D resolution: *R*₃₀ *R*₉₀₀
- 3D resolution: R_{90}
- Methods: FCT, TVD, Godunov, WENO
- Adaptive gridding

Previous 2D numerical parameter studies:

- Astrophysical regime, R_{120}
- Shock tube regime, R_{50}

Current study:

- Shock strengths: $1.45 \le M \le 3$
- Density contrast: At = -0.75
- Planar imaging and free flow bubble

Haas and Sturtevant, *JFM*, 1987
Layes, et al., *PRL*, 2003
Ranjan et al., *PRL*, 2005
Quirk and Karni, *JFM*, 1994

5. Klein, et al., *Ap.J.*, 1994 6. Zabusky and Zeng, *JFM*, 1998 7. Marquina and Mulet, *JCP*, 2003

Experimental setup: initial condition

Bubble release in lower IC window

Bubble rises into upper IC window and stabilizes into sphere

Shocked bubble imaged in the lower IC window

Flow visualization: high Mach number , M=2.95

Flow visualization: high Mach number , M=2.95

8

Integral diagnostics: circulation

Circulation of a moving vortex ring $(V_v = \text{vortex velocity}, u_p = \text{particle velocity},$ 2R = major diam., 2r = minor diam.)(Kelvin, 1867)

$$\Gamma_{\rm PB} \approx u_p \left(1 - \frac{u_p}{2V_w} \right) D \ln \left(\frac{\rho_{\infty}}{\rho_b} \right)$$

Upper bound for shock-generated ring

(u_p = particle velocity, V_W = shock velocity, D= initial bubble diameter,)

(Picone & Boris, JFM 1988)

$$\Gamma_{\rm YKZ} \approx \frac{2D}{V_w} \left(\frac{p_2 - p_0}{\rho_2} \right) \left(\frac{\rho_b - \rho_\infty}{\rho_b + \rho_\infty} \right)$$

Upper bound for shock-generated ring

(p_0 = initial pressure of unshocked ambient gas, p_2 = pressure of shocked ambient gas, ρ_2 = density of shocked ambient gas)

(Yang, Kubota & Zukoski JFM 1994)

	Vortex ring velocity Downstream (V/U _p)		Vortex ring velocity Upstream (V/U _p)		
t/τ	Exp	Raptor	Exp	Raptor	
11.58	1.13	1.17	0.85	0.91	
23.8	1.16	1.15	0.95	0.99	
25.4	1.15	1.16	0.96	0.98	
31.56	1.11	1.19		0.97	
46.26	1.18	1.25	0.97	0.92	

• *M* = 2.95 : U_p = 768 m/s

			Downstream (primary)			Upstream (secondary)		
t /τ	U _p (M)	D	Γ_{exp}	Γ_{PB}	Г _{үкz}	Γ_{Rap}^+	Γ_{exp}	Γ_{Rap}^{-}
	m/s	cm	m²/s	m²/s	m²/s	m²/s	m²/s	m²/s
11.58	755 (2.91)	3.81	15.1	35.4	11.45	28.0		-7.3
23.8	768 (2.95)	3.81	20.9	35.9	11.54	22.6	-5.2	-1.4
25.4	765 (2.94)	3.25	14.9	30.6	9.83	19.4	-3.1	-1.2
31.56	755 (2.91)	3.81	11.3	35.4	11.45	22.8		-1.5
46.26	775 (2.97)	3.68	23.3	35.0	11.18	21.3		-1.8

			Downstream (primary)			Upstream (secondary)		
t /τ	U _p (M)	D	Γ_{exp}	Г _{РВ}	Г _{үкz}	Γ_{Rap}^+	Γ_{exp}	Γ_{Rap}^{-}
	m/s	cm	m²/s	m²/s	m²/s	m²/s	m²/s	m²/s
11.58	755 (2.91)	3.81	15.1	35.4	11.45	28.0		-7.3
23.8	768 (2.95)	3.81	20.9	35.9	11.54	22.6	-5.2	-1.4
25.4	765 (2.94)	3.25	14.9	30.6	9.83	19.4	-3.1	-1.2
31.56	755 (2.91)	3.81	11.3	35.4	11.45	22.8		-1.5
46.26	775 (2.97)	3.68	23.3	35.0	11.18	21.3		-1.8

- Experimental technique : Successful high Mach number experiments with planar imaging and free flow bubble are performed.
- Comparison to simulations : Salient flow features are captured in both experiments and simulations.
- Bulk properties of bubble growth : Spatial extent, circulation & vortex ring velocity are predicted with mixed success by simulation and various models.
- Secondary features : Strong counter-rotating secondary and tertiary vortex rings are observed at M > 2.
- Mach number effects : Transition in bubble growth trends is observed at $M \sim 2$.

Future Work:

- Carry out experiments in M>2, At>0.5 regime.
- Develop experiments to measure species concentration.

