Experimental and computational investigations of shock-accelerated gas bubbles

D. Ranjan, J. Niederhaus, T. Bauer, J. Oakley, M. Anderson, L. Smith, J. Greenough^{*}, R. Bonazza

Wisconsin Shock Tube Laboratory Fusion Technology Institute University of Wisconsin-Madison

*Lawrence Livermore National Laboratory AX- Division

IWPCTM 9 Cambridge 19-23 July, 2004

Overview

- Planar shock wave accelerates spherical soap bubble: Ar inside, N_2 outside, A_{init} =0.176
- Time evolution of geometrical properties
- Mach number effects $M = 2.88, u_p = 745 \text{ m/s}, A_{\text{shock}} = 0.00216$ $M = 3.38, u_p = 907 \text{ m/s}, A_{\text{shock}} = -0.0219$
- Laboratory and computational experiments
- Comparison with RAPTOR (2D and 3D model)

IWPCTM 9 Cambridge 19-23 July, 2004

Details of R-M experiment

Planar shock wave Spherical soap bubble D = 5 cmDriver: He Driven: N₂ Test: Ar

Initial conditions: Continuous white light from the front Motion picture at 220 fps

Post shock: Mie-scattering from the soap film acting as flow tracer 2 laser pulses 2 images per run on same frame

IWPCTM 9 Cambridge 19-23 July, 2004

Initial conditions

In free fall, bubble exhibits almost no left to right motion

Deduce that front to back motion is also negligible

Laser sheet intersects bubble in diametral plane

IWPCTM 9 Cambridge 19-23 July, 2004

IWPCTM 9 Cambridge 19-23 July, 2004

IWPCTM 9 Cambridge 19-23 July, 2004

IWPCTM 9 Cambridge 19-23 July, 2004

IWPCTM 9 Cambridge 19-23 July, 2004

IWPCTM 9 Cambridge 19-23 July, 2004

IWPCTM 9 Cambridge 19-23 July, 2004 Wisconsin Shock Tube Laboratory University of Wisconsin-Madison

t = 90 μs

IWPCTM 9 Cambridge 19-23 July, 2004

IWPCTM 9 Cambridge 19-23 July, 2004

2-D Computational experiments

- <u>Raptor code (LLNL)</u>
- Navier-Stokes; Godunov with PLM; Richardson's error estimation
- 2-D cross section (w/ axial symmetry)
- Grid:
 - 3 AMR levels (4,4,2)
 - $-\Delta xmin = 0.078 \text{ mm}$
- M = 2.88,3.38
- 2-inch-dia. Ar bubble in N_2 initially at 98.274 kPa
- No soap film; sharp interface
- Richardson on only while shock interacts
- Times given relative to initial shock-bubble interaction $(\pm 4 \ \mu s \ error)$

IWPCTM 9 Cambridge 19-23 July, 2004

IWPCTM 9 Cambridge 19-23 July, 2004

Geometrical features

Wisconsin Shock Tube Laboratory University of Wisconsin-Madison

IWPCTM 9 Cambridge 19-23 July, 2004

Width growth rate

IWPCTM 9 Cambridge 19-23 July, 2004

Height growth rate

IWPCTM 9 Cambridge 19-23 July, 2004

Vortex diameter growth rate

IWPCTM 9 Cambridge 19-23 July, 2004

Experiments vs. computations (H₂; M=2.88)

IWPCTM 9 Cambridge 19-23 July, 2004

Height growth rate (power law fit)

IWPCTM 9 Cambridge 19-23 July, 2004

2D Simulation with different initial conditions

IWPCTM 9 Cambridge 19-23 July, 2004

2D Simulation with different initial conditions

IWPCTM 9 Cambridge 19-23 July, 2004

Height growth rate M#2.88

IWPCTM 9 Cambridge 19-23 July, 2004

Width growth rate M#2.88

IWPCTM 9 Cambridge 19-23 July, 2004

Conclusions from comparison with 2D simulation

- Observed bubble distortion, formation of vortex ring
- Measured growth rates of relevant large scale features
- Axial compression and expansion is observed
- Growth rate predicted are good for early timings
- No upstream vortex or jet is observed in simulation
- Absence of small scale features in simulation
- Need 3-D numerical simulations

IWPCTM 9 Cambridge 19-23 July, 2004

3-D Computational experiments

- <u>Raptor code (LLNL): 3-D</u>
- Euler (no artificial viscosity used in 3-D runs); Godunov with PLM; Richardson's error estimation
- 3-D Cartesian, ¹/₄ symmetry about bubble center
- Grid:
 - -2 AMR levels (4,4)
 - $\Delta xmin = 0.195$ mm (factor of >2 coarser than 2-D runs)
- M = 2.88
- 2-inch-dia. Ar bubble in N2 initially at 98.274 kPa
- Film:
 - Thickness: 1 cell-width
 - Density: 0.1 g/cm3
- Times given relative to initial shock-bubble interaction (±4 ms error)

IWPCTM 9 Cambridge 19-23 July, 2004

3-D Computational experiments

- Shock propagates along the *y*-axis
- Bubble is centered at (0,*ycenter*,0)
- Results are viewed using 3 planar slices: one perpendicular to each axis, at a selected location on that axis.
- *x-y* and *z-y* plots are shown at z = 0 and x = 0 locations, respectively.
- *x-z* plots are shown at a *y* location selected to be near the main vortex ring (indicated by red line).

IWPCTM 9 Cambridge 19-23 July, 2004

IWPCTM 9 Cambridge 19-23 July, 2004

IWPCTM 9 Cambridge 19-23 July, 2004

IWPCTM 9 Cambridge 19-23 July, 2004

z-y plane

Width growth rate

IWPCTM 9 Cambridge 19-23 July, 2004

Height growth rate

IWPCTM 9 Cambridge 19-23 July, 2004

Conclusions

- Developed new bubble-release technique
- Used strong (M>2.5) shocks
- Observed bubble distortion, formation of vortex ring
- Measured growth rates of relevant large scale features
- $\tau = D/u_p$ appears to be appropriate time scale
- 3D simulation with film resolved internal structures and small scale perturbations.
- Need full 3-D numerical simulations
- Develop "tomography" experiment
- Develop experiment to measure species concentration

IWPCTM 9 Cambridge 19-23 July, 2004

Initial conditions

In free fall, bubble exhibits almost no left to right motion

Deduce that front to back motion is also negligible

Laser sheet intersects bubble in diametral plane

IWPCTM 9 Cambridge 19-23 July, 2004