

Inertial Electrostatic Confinement (IEC) Fusion

>IEC Fusion utilizes negatively charged electrodes to electrostatically accelerate positively charged ions to fusion relevant energies.

>All experiments discussed herein were conducted on the UW-Madison IEC Device known as HOMER using deuterium fuel.

Figure 1: UW-Madison IEC Device HOMER

► HOMER utilizes concentric, highly transparent spherical grids as the electrodes.

>Majority of ion source species created are D_3^+ , with lesser fractions of D_1^+ and D_2^+ also created. ➢ Typical Operating Parameters

- •Cathode Voltage: -40 to -120 kV
- •Anode Voltage: Ground
- •Ion Current: 30 75 mA
- •Feed Gas: Deuterium
- •Pressure: 1.5 2.5 mTorr

Figure 2: Photo of HOMER with both FIDO arms making up the TOF setup.

Contact Information: David Donovan: dcdonovan@wisc.edu

Fusion Ion DOppler (FIDO) Diagnostic

Purpose - Measure the Doppler shift of the products of D-D fusion reactions in order to back out the centerof-mass energy of the fusion reactants. ≻In high background pressure (>0.1mtorr), Doppler shift results from center of mass energy of beambackground fusion reactants. >Challenge – Reduce X-ray noise sufficiently to accurately discern Doppler shifted peaks of products. ≻High levels of X-ray noise from bremsstrahlung radiation produced when electrons impact the wall of the device overwhelm the triton signal (1.01MeV) and distort the proton signal (3.02MeV). Solution – Move the charged particle detectors out of the line-of-sight of the IEC chamber.

≻Method – Detector placed at end of arm with 20 degree bend at the elbow. Fusion products are bent around the elbow and into the detector using a 1.5T electromagnet.

Result – Energy spectra of fusion reactants measured with resolution on the order of 5keV.

Figure 4: Raw energy spectrum collected from FIDO diagnostic demonstrating scale of noise reduction.¹ D.R. Boris. G.L. Kulcinski. J.F. Santarius, D.C. Donovan, and G.R. Piefer, 'Measuring D(d,p)T Fusion Reactant Energy Spectra with Doppler Shifted Fusion Products," Journal of Applied Physics 107, 123305 (2010).

Spatial and Energy Profiling of D-D Fusion Reactions in an Inertial Electrostatic Confinement Fusion Device

D. C. Donovan, D. R. Boris, G. L. Kulcinski, J. F. Santarius University of Wisconsin-Madison Fusion Technology Institute

Figure 3: FIDO Arm with 20 degree and 1.5T magnet at elbow.

>Positive ions reach maximum energy at the cathode moving towards the center, so they are believed to be primarily responsible for Core fusion.

>Negative ions reach maximum energy at the anode moving away from the center, which makes them the most likely source of **fusion** in the Source.

>Inter-Grid region appears to be primarily a transit region for negative and positive ions, but is not an ideal location for fusion for either.

When anode radius was reduced from 25 cm to 15 cm, the center of the peak in concentration in the Source region contracted radially by ~6-10 cm.

Since negative ions reach max energy at the anode, the question still remains why the peak in source region counts is ~ 15 cm beyond the anode in both cases.

Conclusions

- >The TOF diagnostic offers far greater spatial and energy resolution than any other diagnostic system previously implemented on an IEC device.
- Initial results indicate a high concentration of fusion inside the cathode and outside the anode, with an unexpected lower concentration between electrodes.
- >High fusion rates outside of anode indicate greater importance of negative ions than previously expected.
- Fusion concentrations unexpectedly continue to increase with radius beyond the anode, despite negative ions reaching max energy at anode.
- \succ Future goals include increasing rate of data collection in order to obtain more complete fusion reactant energy profiles in each radial bin.