# **Spatial and Energy Profiling of D-D Fusion Reactions in an Inertial Electrostatic Confinement Fusion Device**



## **Inertial Electrostatic Confinement (IEC) Fusion**

Fusion utilizes negatively charged **≻IEC** electrodes to electrostatically accelerate positively charged ions to fusion relevant energies. ≻All experiments discussed herein were conducted on the UW-Madison IEC Device known as HOMER.



Figure 1: UW-Madison IEC Device HOMER

>HOMER utilizes concentric, highly transparent spherical grids as the electrodes. >Majority of ion species created are  $D_3^+$ , with lesser fractions of  $D_1^+$  and  $D_2^+$  also created.

- ➢ Typical Operating Parameters
- •Cathode Voltage: 40 120 kV
- •Anode Voltage: Ground
- •Ion Current: 30 75 mA
- •Feed Gas: Deuterium
- •Operating Pressure: 1.5 2.5 mtorr



Figure 2: Photo of HOMER with both FIDO arms making up the TOF setup.

## **Fusion Ion Doppler (FIDO)** Diagnostic

>Purpose - Measure the Doppler shift of the products of D-D fusion reactions in order to back out the center-of-mass energy of the fusion reactants. ≻In high background pressure (>0.1mtorr), Doppler shift results from center of mass energy of beam-background fusion reactants. >Challenge – Reduce X-ray noise sufficiently to accurately discern Doppler shifted peaks of products. ≻High levels of X-ray noise from electron induced bremsstrahlung radiation from the wall of the device overwhelm the triton signal (1.01MeV) and distort the proton signal (3.02MeV). Solution – Move the charged particle detectors out of the line-of-sight of the IEC chamber.

 $\rightarrow$  Method – Detector placed at end of arm with 20 both detectors. degree bend at the elbow. Fusion products are bent  $\geq$  Energy spectra collected by the FIDO setup are required around the elbow and into the detector using a 1.5T to account for the slight change in the fusion product electromagnet. **Result** – Energy spectra of fusion reactants measured with resolution on the order of 5keV.



#### **Contact Information: David Donovan: dcdonovan@wisc.edu**

D. C. Donovan, D. R. Boris, G. L. Kulcinski, J. F. Santarius University of Wisconsin-Madison Fusion Technology Institute



Figure 3: FIDO Arm with 20 degree and 1.5T magnet at elbow.

Figure 4: Raw energy spectrum collected from FIDO diagnostic demonstrating scale of noise reduction.

### **Experimental Setup**

>The TOF system is made up of two identical FIDO diagnostics placed on opposite sides of the IEC chamber creating a direct line of sight through both arms and the core of the IEC device. The TOF setup also includes a system of high speed timing electronics in order to accurately capture the exact times at which charged particles reach the detectors.



Figure 5: Schematic of TOF diagnostic on HOMER utilizing two identical FIDO setups to create a line of sight through the core of the device

3.02 MeV proton.



## **Time of Flight (TOF) Diagnostic**

### **Method of Operation**

►D-D fusion reaction creates a 1.01 MeV triton and a

≻Conservation of momentum requires both products to travel away from each other in the exact opposite directions in the center-of-mass frame.

 $\succ$  The TOF setup is used to capture both products of the D-D fusion reactions, which occur within a line of sight of

velocity due to the Doppler shift.



accuracy.





>Only timing electronics used to determine spatial location. Average Doppler shift of 200 keV applied to the results. ► Spatial resolution of roughly 2 cm.



## Conclusions

> Initial results indicate a high concentration (>50%) of all fusion reactions occurring in the IEC device are taking place within the

> Previous IEC experiments and theory indicated that at most 20% of total fusion reactions occurred within the cathode region. > The TOF diagnostic offers far greater spatial and energy resolution than any other diagnostic system previously implemented on an IEC device.

>Additional upgrades to the diagnostic are planned, which will dramatically increase the rate at which data is collected as well as further increase the spatial resolution to the order of 1 mm