Optimization in permanent prostate implant treatment planning using the adjoint dose calculation and the source influence fields

*Sua Yoo, +Douglass L. Henderson, and ++Bruce R. Thomadsen

University of Wisconsin-Madison *Dept. Of Medical Physics, *Dept. Of Engineering Physics, ⁺⁺Dept. Of Medical Physics and Human Oncology

Implar	itation Seed	s and Needles
Stylet Button	Calibrations; 10mm increments	Echogenic Tip
Needle Hub	Cannula	Obturator, Trocar Point
Needle	diameter 20cm lon	a tube
Castala	Seed 0.8mm diamete	er,4.5-5.0mm long

Optimization based on dose to each pixel dataminimize $\sum_{\forall i} \sum_{\forall i} x_i \cdot \delta_i$			
subject to $\begin{bmatrix} \cdot & \cdot & \cdot \\ D_i + x_i \ge L_{tu}, & \text{if } D_i \le L_{tu} & \text{i} \in \text{tumor}, \\ \cdot & \cdot & \cdot \end{bmatrix}$			
$\left\{ \begin{array}{ll} \mathbf{D}_{i} - \mathbf{x}_{i} \leq \mathbf{U}_{ROI}, \text{if } \mathbf{D}_{i} \geq \mathbf{U}_{ROI} \& i \notin \text{tumor}, \end{array} \right.$			
$x_i = 0,$ otherwise.			
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
$ \begin{cases} L_{tu} & \text{lower dose boundary for tumor} \\ U_{ur} & \text{upper dose boundary for urethra} \\ U_{no} & \text{upper dose boundary for normal tissue} \\ U_{re} & \text{upper dose boundary for rectum} \\ \delta_j \in \{1, 0\} \end{cases} $			

Isodose comparison

Optimization based on dose data for each pixel

Optimization based on dose data for an entire RO and on source influence fields

Introduction

- Prostate permanent implantation is a radiation treatment in which radioactive seeds are directly implanted into the prostate and left forever.
- Adjoint field of a region-of-interest ROI (Φ^+_{ROI}) and source influence fields (Φ_s) are used to find out a seed configuration which delivers optimal dose distribution for the prostate permanent implantation treatment plan.

- DANTSYS (A Diffusion Accelerated Neutral Particle Transport Code System)
 - Boltzmann transport equation for multigroup particles.
- Three group photon cross section library
 - The lowest three energy groups of the FENDL-2-42 group cross section library
 - 1st 20-30keV, 2nd 10-20keV, 3rd 1-10keV
- Common Implantation brachytherapy seeds: ¹²⁵I and ¹⁰³Pd ∈1st group [20-30keV]

 $L_{tu} = 180\%, U_{ur} = 150\%, U_{no} = 125\%, U_{re} = 80\% \text{ of } D_{p} U_{\Phi} = 245$

target.

further investigation optimization.

Optimization

- Optimization goal is to find a seed configuration achieving optimal dose distribution which delivers high enough dose to the target while sparing sensitive structures.
- Optimization system GAMS (GAMS development corporation)
- General algebraic modeling system.
- Mixed-integer-programming (MIP).
- CPLEX solver.
- Branch-and-bound method.
- Binary variable $\delta_i \in \{1, 0\}$.

Conclusion

- •A new optimization model for the prostate implantation treatment plan was investigated using the adjoint flux distributions of ROIs and the source influence fields.
 - -The adjoint fields of ROIs allow calculation of dose to ROIs providing data reduction and faster optimization.
 - -The source influence field is an analogous concept of repulsive electric field thus the seeds tend to spread out delivering move uniform dose to the

Future Work

- •Implementing the adjoint fields in the optimization process needs
- •Finer group library (G-210) should be used to simulate actual implantation seeds for accurate dose calculation in 3-D treatment plan