Time-resolved Kr K-shell Spectroscopy of Directly-Driven Microballoon Implosions: Theory and Experiment

Authors

D. A. Haynes, Jr.

Fusion Technology Institute University of Wisconsin, Madison

C. F. Hooper, Jr., G. Junkel, and M. Gunderson

Department of Physics University of Florida

D. K. Bradley Lawrence Livermore National Laboratory

J. A. Delettrez, P. A. Jaanimagi

Laboratory for Laser Energetics University of Rochester

Summary and Outline

Time-resolved Kr line emission has been observed in directly-driven microballoon implosions, and can serve as a useful diagnostic to probe regions of interest for neutron generation inaccessible to Ar line emission

- Motivation
 - Previous Ar doped implosion results
- Experiment
 - Design
 - Instruments
 - Data reduction
- Theory
 - Stark broadened Kr K-shell line shapes
 - NLTE Kr populations

DAH: DPP99 In this case, the temperature inferred from Ar line emission peaks at half the predicted value, though YOC was 1/3.

Motivation (cont.) As implosion proceeds, density inferences from Kr L-shell and Ar K-shell lines diverged.

Motivation (cont.): B. Yaakobi of LLE has recorded timeintegrated Kr K-shell lines

• Even though YOC is 0.36, electron temperatures and densities inferred from Ar K-shell line emission are lower by factors of 2 and 10, respectively, from their predicted values:

• Neutrons may be emitted from regions that Ar K--shell line analysis is not accessing.

• Simultaneous density inferences from Ar K-shell and Kr Lshell lines are similar at early times, but diverge at late times:

• At late times, Kr lines are emitted from regions of higher density than the Ar K-shell lines.

• Yaakobi had shown that time-integrated Kr K-shell emission can be observed from directly-dirven Ar/Kr doped D₂ microballoon implosions.

Experiment: Design

•Directly driven implosions using 60 beams of the Omega laser system, delivering approximately 27kJ to the target in a 1ns square pulse.

> •"small" targets were imploded using **unsmoothed** beams.

•"large" targets were imploded using either smoothed or unsmoothed beams.

Experiment: Instruments

Taking the LXS as an example, the time-resolved data was reduced as follows:

- •Digitization (50µm X 50µm)
- •Film Density to Intensity Conversion (Wedge Correction)

•Correction for known instrumental distortions (streak angle, and barrel correction).

- •Sweep speed established by timing fiducial trace
- •Lineouts in spectral direction, averaging over time.

•Dispersion relationship established by line identification, constrained by known crystal 2d and geometry.

Data Reduction (cont.)

Data: Time-resolved Kr K-shell from two instruments

Smooth beams, 1mm OD, 15µm shell, 1% Ar / 4% Kr in DD (20Atm total) Unsmoothed beams, 1mm OD, 10µm shell, 1%Ar / 2% Kr in DD (20Atm total)

Theory: Stark Broadened Kr K-shell resonance lines

$$I(\omega) = \int d\vec{E} \ Q(\vec{E}) \ J(\omega;\vec{E})$$

Theory: Stark Broadened Kr satellites

Kinetics calculations were performed using CRETIN (H.A. Scott and R. W Mayle, Applied Physics B **58** pp.35-43 (1994)), and a 1194 level Kr model obtained from N. Delamater (LANL). <u>The authors wish to thank Drs. Scott and</u> <u>Delamater for their invaluable assistance.</u>

Intensity Ratios of Kr K-shell lines and Satellites may form a useful diagnostic for temperatures at which Ar is largely fully stripped.

Summary and Conclusions

• Peak n_e and kT_e inferences from Ar line emission analysis are difficult to reconcile with observed YOC.

• Ar K-shell lines and Kr L-shell lines, recorded simultaneously on the same spectrometer are characteristic of different densities, with the Kr lines characteristic of higher densities.

- Kr K-shell lines have been observed using streaked spectrometers.
- The Kr He- β line displays diagnostically useful density dependence for $n_e > 3e24/cc$, and ratios of He-like likes to their satellites or to H-like lines will provide a useful temperature diagnostic for $kT_e > 2 \text{ keV}$

Time-resolved Kr line emission has been observed in directly-driven microballoon implosions, and can serve as a useful diagnostic to probe regions of interest for neutron generation inaccessible to Ar line emission