

This work formulates a Double P1 (DP1) expansion of the Fokker-Planck equation in order to take advantage of the strong correlation between electron energy and direction. Previous formalisms^{a,b} have made use of a P1 expansion of the Fokker-Planck equation to create a diffusion model for electron thermal conduction.

Steady State Transport Equation:

$$\vec{v} \cdot \vec{\nabla} f - \frac{e\vec{E}}{m_e} \cdot \frac{\partial f}{\partial \vec{v}} = C(f)$$

1D Slab Steady State TE with Krook collision operator: $\nu \mu \frac{\partial f}{\partial x} - \frac{eE}{m_o} \mu \frac{\partial f}{\partial \nu} = C(f) = -\nu_e (f - f_{SOURCE})$

Expand *f* in Legendre Polynomials on the half interval (DP1 expansion): $f(\mu, \nu, x) = \begin{cases} f_0^+(\nu, x) + (2\mu - 1)f_1^+(\nu, x) \\ f_0^-(\nu, x) + (2\mu + 1)f_1^-(\nu, x) \end{cases}$

Half-angular moments can be put in diffusive form

$$-\mathfrak{D}(D_1\mathfrak{D}\psi_1) + \Sigma\psi_1 = S_0 - 3\mathfrak{D}(D_1S_1) +$$

 $-\mathfrak{D}(D_2\mathfrak{D}\psi_2) + \frac{7}{2}\Sigma\psi_2 = -\frac{3}{4}S_0 + S_2 - 3\Sigma$
Apply a zero current condition to calculate the elect

$$a(x) = \frac{eE(x)}{m_e} = \frac{-\frac{\partial}{\partial x}\int_0^\infty v^5\psi_1 dv + 4\int_0^\infty v^3\psi_1 dv}{4\int_0^\infty v^3\psi_1 dv}$$

Where:

$$\mathfrak{D} = \frac{\partial}{\partial x} - \frac{a}{v} \frac{\partial}{\partial v}$$

$$\mathfrak{L}(x,v) = \frac{v_e}{v} = \left(\frac{v_{th}}{v}\right)^4 \cdot \frac{4\pi n_e e^4 \log \Lambda}{(k_b T_e)^2}$$

$$S(x,v,\mu) = \Sigma \cdot f_{SOURCE}$$

$$\psi_1 = (f_0^+ + f_0^-) + \frac{3}{2}(f_1^+ - f_1^-)$$

$$\psi_2 = \frac{3}{4}(f_1^+ - f_1^-)$$

$$D_1 = 2D_2 = \frac{1}{3\Sigma}$$

$$S_0 = (S_0^+ + S_0^-)$$

$$S_1 = \frac{1}{2}(S_0^+ - S_0^-) + \frac{1}{2}(S_1^+ + S_1^-)$$

$$S_3 = -\frac{1}{8}(S_0^+ - S_0^-) + \frac{3}{8}(S_1^+ + S_1^-)$$

Double P1 Approximation to Electron Distribution Function for Purposes of Computing Non-Local Electron Transport Jeffrey Chenhall, Duc Cao, Gregory Moses Fusion Technology Institute, University of Wisconsin–Madison

 $2\Sigma\psi_2$ $\mathfrak{D}(D_2S_3) + \frac{J}{4}\Sigma\psi_1$

ctric field term:

 $3\int_0^\infty v^5 S_1 dv$

 $_1 dv$

DP1 approximation to first four angular moments for DP1 (solid) and P1 (dashed) for isotropic source

DP1 half-angular moments for DP1 (solid) and P1 (dashed) for isotropic source

Heat flux for P1 and DP1 for isotropic source

DP1 Model Gives Improved Results

DP1 approximation to first four angular moments for DP1 (solid) and P1 (dashed) for anisotropic source

DP1 half-angular moments for DP1 (solid) and P1 (dashed) for anisotropic source

Heat flux for P1 and DP1 for anisotropic source

- Isotropic Problem
- Anisotropic Problem

$$\circ S(x, v, \mu) = f_S \cdot \left[1 + \frac{1}{3}\delta(\mu + 1)\right]$$

$$\approx f_{S} \cdot \left[1 + \frac{1}{3} \left(1 - 3\mu + \frac{3}{4} \cdot 5 \left(\frac{3}{2} \mu^{2} - \frac{1}{2} \right) - \frac{1}{4} \cdot 7 \left(\frac{5}{2} \mu^{3} - \frac{3}{2} \mu \right) \right) \right]$$

- moments.

- Improve model robustness

- for Laser Energetics

Test problems to compare DP1 with P1 approximation:

• Maxwellian source distribution with strong gradients:

• Left Domain Half: T = 0.1 keV, $n=1 \times 10^{21}$ cm⁻³

• Right Domain Half: T = 1.0 keV, $n=1 \times 10^{22}$ cm⁻³

• Added anisotropic source term

101 linearly spaced spatial zones between 0 and 100 μm 25 linearly spaced velocity groups between 0 and $2 \cdot v_{TH @1keV}$

Discussion

DP1 and P1 showed good agreement for isotropic problem • 10% Difference seen in anisotropic problem in half angular

DP1 model better than P1 for higher anisotropy problems due to its handling of higher order moments

Future Work

• Solve full plasma conduction problem • Generalize the DP1 model to 2D

• ^aSchurtz et. al. Phys. Plasmas 7, 4238 (2000) • ^bManheimer et. al. Phys. Plasmas **15**, 083103 (2008) • ^cGelbard et. al. Nucl. Sci. Eng. **5**, 36-44 (1959) • This work is supported by the University of Rochester Laboratory