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/@* A of Computing Non-Local Electron Transport
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This work formulates a Double P1 (DP1) expansion of the Fokker-Planck
equation 1n order to take advantage of the strong correlation between
electron energy and direction. Previous formalisms®° have made use of a
P1 expansion of the Fokker-Planck equation to create a diffusion model
for electron thermal conduction.

Steady State Transport Equation:
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Expand f 1n Legendre Polyn0m1als on the half interval (DP1 expansion):
_|fowx)+Cu—-Dff (v,x)
f(,Ll, U, X) T — L —
fo v, x) + Qu+ Dfy (v,x)
Half-angular moments can be put 1n diffusive form®:
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Apply a zero current condition to calculate the electric field term:
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Where Diffusion Length as a Function of Velocity
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Diffusion
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1/)2 — — ( f1+ — fl_) Diffusion length as a ﬁnction of velocity
as compared to problem size (cyan) and
1 grid spacing (red)
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DP1 approximation to first four angular
moments for DP1 (solid) and P1 (dashed)
for 1sotropic source
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DP1 half-angular moments for DP1 (solid)
and P1 (dashed) for 1sotropic source

Heat Flux: Q
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source
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DP1 Model Gives Improved Results

., Number Density Angular Moments: n
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DP1 approximation to first four angular
moments for DP1 (solid) and P1 (dashed) for
anisotropic source
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DP1 half-angular moments for DP1 (solid)
and P1 (dashed) for anisotropic source

Heat Flux: Q
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Test problems to compare DP1 with P1 approximation:
* Isotropic Problem
o Maxwellian source distribution with strong gradients:
= [ eft Domain Half: T=0.1keV, n=1x10%! cm-
= Right Domain Half: T = 1.0 keV, n=1x10%? cm™
* Anisotropic Problem
o Added anisotropic source term

o S(x,v,u) = fs - [1 --15(/1 1)]

~ fs - [1+ (1—3u+- 5( 5 _l)_%”(;“?’_%“))]

* 101 linearly spaced spatial zones between 0 and 100 um
* 25 hnearly spaced velocity groups between 0 and 2 - vry @1kev

Discussion

* DPI and P1 showed good agreement for 1sotropic problem

* 10% Dafference seen 1n anisotropic problem in half angular
moments.

* DPI model better than P1 for higher anisotropy problems
due to 1ts handling of higher order moments

Future Work

* Solve full plasma conduction problem
* Generalize the DP1 model to 2D
* Improve model robustness
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