

Non-local Electron Transport Validation using 2D DRACO Simulations D. Cao¹, J. Chenhall¹, E. Moll¹, A. Prochaska¹, G. Moses¹, J. Delettrez², T. Collins² ¹University of Wisconsin–Madison ²University of Rochester Laboratory for Laser Energetics

<u>Abstract</u>: Comparison of 2D DRACO simulations, using a modified version¹ of the Schurtz, Nicolai and Busquet (SNB) algorithm² for non-local electron transport, with direct drive shock timing experiments³ and with the Goncharov non-local model⁴ in 1D LILAC will be presented. Addition of an improved SNB non-local electron transport algorithm in DRACO allows direct drive simulations with no need for an electron conduction flux limiter. Validation with shock timing experiments that mimic the laser pulse profile of direct drive ignition targets gives a higher confidence level in the predictive capability of the DRACO code. This research was supported by the University of Rochester Laboratory for Laser **Energetics.**

Algorithm

On every timestep in DRACO... Solve the following equation for $T^{(k)}$:

$$\rho C_{v} \frac{T^{(k)}(\vec{r}) - T^{n}(\vec{r})}{\Delta t} = -\vec{\nabla} \cdot K_{SH}^{n} \vec{\nabla} T^{(k)}(\vec{r})$$

$$k = iteration \ index$$

$$S_{ext}^{(0)}(\vec{r}) = S_{ext}(\vec{r}, T^{n}(\vec{r})) =$$

2. Solve the following equation for $H_a(\vec{r})$:

$$-\vec{\nabla} \cdot \frac{\lambda'_g(\vec{r})}{3} \vec{\nabla} H_g(\vec{r}) + \frac{H_g(\vec{r})}{\lambda_g(\vec{r})} = -\frac{\vec{\nabla} \cdot K_{SH}^n \vec{\nabla} T^{(k)}}{24}$$
$$g = 1,2,3 \dots G$$

Check the convergence criterion:

$$\sum_{g=1}^{G} \frac{H_g(\vec{r})}{\lambda_g(\vec{r})} \cong \sum_{g=1}^{G} \frac{H_g(\vec{r})}{\lambda_g(\vec{r})} \bigg|_{last \ it}$$

Note: Do not check for convergence in low density areas

4. If no convergence, update
$$S_{ext}^{(k)}$$
:
 $S_{ext}^{(k)} = S_{ext}^{(k-1)} + \sum_{g=1}^{G} \frac{H_g(\vec{r})}{\lambda_g(\vec{r})} - \vec{\nabla} \cdot K_{SH}^n$

Then go back to step #1 and repeat with next iteration of k (i. e. $k \rightarrow k + 1$).

Else, stop iteration and set

 $T^{n+1}(\vec{r}) = T^{(k)}(\vec{r})$

Related Talk – JO4.00013, J.A. Delettrez : Effect of Nonlocal Electron Transport in Both Directions on the Symmetry of Polar-Drive--Ignition Targets

Results

Temperature and shock velocity results from a direct-drive ICF simulation in DRACO with a three-picket laser pulse

Discussion

-Mean free paths are the only physical parameters Location of temperature fronts and preheat levels depend on mean free paths Mean free paths depend on detailed electron transport _

- physics

-For very small mean free paths, results reproduce Spitzer conduction result

Conclusion

SNB method better matches LILAC results than the fluxlimited case. More studies on SNB's potential needs to be done; the mean free paths represent a full optimization function that can be adjusted, and the effects of the number of groups must still be explored.

Acknowledgements

We thank Marty Marinak, LLNL, for his guidance on the algorithm and George Zimmerman, LLNL, for providing guidance on algorithm implementation. Support for this research provided by University of Rochester Laboratory for Laser Energetics.

References

¹ Private communications with M. Marinak and G. Zimmerman, LLNL. ² Schurtz, Nicolai and Busquet, "A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes", Phys. Plasmas 7, 4238(2000). ³ T. Boehly, et. al., "Multiple spherically converging shock waves in liquid deuterium", Phys. Plasmas 18, 092706(2011). ⁴V. Goncharov, et. al., "Early stage of implosion in inertial confinement fusion: Shock timing and perturbation evolution", Phys. Plasmas 13, 012702(2006).

