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Abstract:

A magnetic deflection energy analyzer and Faraday trap diagnostic have been used to make measurements of divergent deuterium anion flow in the
inertial electrostatic confinement experiment at the University of Wisconsin — Madison (UW — 1EC) [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R.
Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, 1. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. This device confines

high energy light ions in a spherically symmetric, electrostatic potential well. Deuterium anion current densities as high as 8.5 nA/cm? have been
measured at the wall of the UW-IEC device, 40 cm from the surface of the device cathode with a detector assembly of admittance area 0.7 cm?. Energy
spectra obtained using a magnetic deflection energy analyzer diagnostic indicate the presence of D,, and D- ions produced through thermal electron
attachment near the device cathode, as well as D- ions produced via charge transfer processes between the anode and cathode of the device.
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Conclusion
Contact Information: Using a magnetic deflection energy analyzer, deuterium anions resultant from both charge transter and thermal electron attachment processes have been measured in the UW IEC device. In addition, long lived molecular deuterium anions have been measured with metastable
D Boris: lifetimes of at least 0.5 us. These molecular anions were detected with the full cathode energy, indicating that they originated near the hot cathode at the center of the IEC device. A Faraday trap diagnostic was used to corroborate the data from the magnetic deflection energy
ave boris. analyzer and to make measurements of deuterium anion current at two positions around the UW IEC device. This diagnostic indicated that the deuterium anion current was highly variable with angular position, indicating a strong dependence on device geometry. In addition

anion current densities of 8.5 nA/cm? were measured with the Farday trap. Further work is recommended to more definitively map the angular dependence of deuterium anion intensity, and to determine the extent to which IEC devices can produce molecular hydrogenic anions.



