

Dave Boris

University of Wisconsin –Madison Fusion Technology Institute 1500 Engineering Drive Madison WI 53706

8th US-Japan IEC Workshop University of Kansai

Project Goals

- Proof of principle for using a solid state device as a means to convert D-³He fusion protons to electric power
- Measure the efficiency of such a device and compare with theoretical predictions
- Characterize the damage induced in such a device under proton fluxes similar to those in a power reactor.

Direct Conversion Theory

• Semiconductor devices have a inherent voltage drop due to p-type and n-type dopant. Charge carriers (e- / holes[+]) induced in the semiconductor will move in

Inherent Voltage drop creates a built in Electric field which creates an electric current from any charge carriers created from incoming radiation.

Direct Conversion Theory Continued

4

Efficiency of Direct Conversion

- The following defines the expected efficiency of the PIN diode energy conversion scheme.
- V_{diode}= Effective voltage drop of diode (max @ inherent voltage [~1V in Si])
 - Typically $V_{diode} \sim 0.7 V_{inherent}$
 - Dopant concentration has a significant effect on $V_{inherent}$
- $\gamma \equiv \text{proton flux (protons/cm}^2\text{s})$
- $E_{pair} \equiv$ Energy required to create e⁻/hole pair in Si (3.62eV Knoll [Table 11.1])
- $E_p \equiv$ Energy of incident proton
- The following calculation is with Si:

$$P_{in} = \gamma e E_p(eV)$$

Material	Si	Ge	GaAs	SiC	Diamond
Vinherent(V)	1.1	0.7	1.4	2.4	5.5
Epair(eV)	3.6	3.0	4.7	8.8	16.5
Vdiode(V)	0.7	0.4	0.9	1.5	3.5

$$P_{out} = V_{diode}(Volts) \frac{\gamma e E_p(eV)}{E_{pair}(eV)}$$

$$\eta = \frac{P_{out}}{P_{in}} = \frac{V_{diode}}{E_{pair}} \approx \frac{0.7(Volts)}{3.62(Volts)} = 19\%$$

5

Fusion Technology Institute

Direct Conversion Efficiency Depends on "Inherent Voltage Drop" and e⁻/hole Pair Creation Energy

Theoretical Efficiencies for solid state devices range from ~10% - 25% over a range dopant concentrations.

Fusion Technology Institute

6

- 300um Pb shield (X-Ray shielding)
- 500um Si PIN junction diode (to limit damage at end of trajectory)
- This utilizes about 6MeV of 14.7MeV available in the D-3He proton.
- PIN diode face is $10cm^2 \rightarrow \sim 1nA$ of current with IEC proton rates of $1x10^7$

Configuration of UW-IEC D-³He Proton Direct Conversion Experiment

PROBLEM: Charge Carrier Lifetime can Limit the Usefulness of $500 \,\mu$ m Thick PIN Junction Design

- Typical lifetimes of $e^{-1}/hole$ in Si is ~10-100 μ s.
- $V_{\text{inherent}} = 1V \rightarrow \text{E-field} = 2000 \text{V/cm}$ (in a 500 μ m thick PIN junction)
- In a 2000V/cm E-field a charge carrier spends ~10-20 μ s in the junction. (Recombination is possible)

Solution: By layering smaller junctions in series or in parallel this problem can be avoided.

Conversion Efficiency and Proton Damage Effects will be Measured

- Once principle has been proven on IEC device a 3MeV linear accelerator will be used for:
 - Measuring the efficiency of PIN junction technique
 - Examining the effect of radiation damage on conversion efficiency and device performance.

- The theoretical efficiency of a PIN junction direction energy conversion device has been calculated to be ~20%
- An experiment is in progress at the University of Wisconsin to prove the principle of using a PIN junction to convert D-³He protons to electric power.
- Future experiments are planned to measure the efficiency of a PIN junction converter and analyze the degradation of device performance due to radiation damage from protons.

Future Work

- Efficiency and radiation damage measurements on accelerator have yet to be done.
- Multi-junction design would be more useful for power conversion applications. This design is more expensive to fabricate but should eventually be tested.

How a Diode Works

When we bring P-type & N-type together a depletion zone is created around the junction This produces a barrier, blocking charge flow.

© J. C. G. Lesurf Univ. St. Andrews

•Proton Detectors operate in reverse bias mode

•Direct Conversion depends on inherent voltage drop with 0V applied.

Theoretical Power Conversion Efficiency is Affected by Real Diode Characteristics

Fusion Technology Institute

14