

Introduction

- In-vessel coils are used in ITER to provide control of Edge Localized Modes (ELMs) and for Vertical Stability (VS) of the plasma
- The ELM coils are arranged in 9 sets of 3 picture frame coils on the Outboard side
- The ELM coils are located inside the vacuum vessel in pockets in the Blanket Module
- For these water cooled normal conducting coils the main radiation concerns are: •Mechanical and structural degradation in ceramic insulation under long-term neutron fluence •Resistivity degradation in ceramic under instantaneous absorbed dose rates $(n+\gamma)$ •Resistivity increase in Cu conductor due to neutron induced transmutations •Mechanical and structural degradation in Cu (similar to considerations for ITER FW heat sink)
- Also concerned with total heating (ohmic+nuclear) due to thermal stress, cooling
- Vacuum vessel He production and nuclear heating are additional concerns due to reduced shielding

- Water cooled stainless steel mineral insulated conductor (SSMIC)
- 59 mm OD
- CuCrZr conductor
- MgO ceramic insulator
- 6 turn coil arranged in a 3x2 array

View from vacuum vessel showing integration with blanket modules and poloidal manifolds

Detailed Nuclear Analysis of ITER ELM Coils

T.D. Bohm, M.E. Sawan, S.T. Jackson, P. Wilson Fusion Technology Institute, University of Wisconsin-Madison, USA

Native Geometry MCNP models

Legs Analyzed: 1)10 pipe poloidal 2)Toroidal 3)8-pipe poloidal

Toroidal Model

- •Cylindrical Model (IB & OB)
- •5 degree sector with 45 cm height
- •Uniform source (0.75 MW/m²)
- Reflecting boundaries
- •2 cm gaps between BL modules
- CuCrZr conductor, MgO
- •ELM clamps not modeled

Nuclear Heating Toroidal Leg

Mesh tally peak 1.4 W/cm³

Toroidal Leg	Peak Value
MgO Insulator	
Fast neutron fluence (n/cm ²)	2.13e20
Dose rate (Gy/sec)	172
CuCrZr conductor	
CuCrZr dpa (dpa)	0.207
Nuclear heating (W/cm ³)	1.24

 He production and nuclear heating on the Vacuum Vessel are also important > VV heating limits (0.4 W/cm³) exceeded along poloidal leg

Poloidal Models

•Cylindrical Model (IB & OB) •10 degree sector with 100 cm height •Uniform source (0.75 MW/m²) Reflecting boundaries •2 cm gaps between BL modules CuCrZr conductor, MgO •ELM clamps, Manifold brackets not

modeled

Mesh tally peak 2.6 W/cm³

10-pipe Poloidal Leg	Peak Value
MgO Insulator	
Fast neutron fluence (n/cm ²)	1.89e20
Dose rate (Gy/sec)	282////
CuCrZr conductor	
CuCrZr dpa (dpa)	0.210
Nuclear heating (W/cm ³)	2.39

evaluation

 The ELM coil design will generally meet the radiation limits •Radiation induced conductivity in the insulator will require care in the electrical grounding circuit design

 Heating (ohmic+nuclear) levels will require improved design due to thermal stress (note: nuclear heating <20% of total)

Vacuum vessel heating limits are exceeded and will need further