
• Water cooled stainless steel mineral insulated conductor (SSMIC)
• 59 mm OD
• CuCrZr conductor
• MgO ceramic insulator
• 6 turn coil arranged in a 3x2 array
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Introduction

Conclusions

• In-vessel coils are used in ITER to provide control of Edge Localized Modes (ELMs) 
and for Vertical  Stability (VS) of the plasma

• The ELM coils are arranged in 9 sets of 3 picture frame coils on the Outboard side
• The  ELM coils are located inside the vacuum vessel in pockets in the Blanket 
Module

• For these water cooled normal conducting coils the main radiation concerns are:
•Mechanical and structural degradation in ceramic insulation under long-term neutron fluence
•Resistivity degradation in ceramic under instantaneous absorbed dose rates (n+γ)
•Resistivity increase in Cu conductor due to neutron induced transmutations
•Mechanical and structural degradation in Cu (similar to considerations for ITER FW heat sink)

• Also concerned with total heating (ohmic+nuclear) due to thermal stress, cooling
•Vacuum vessel He production and nuclear heating are additional concerns due to 
reduced shielding

Native Geometry MCNP models CAD Based Analysis (DAG-MCNP) 

•The ELM coil design will generally meet the radiation limits
•Radiation induced conductivity in the insulator will require care in the 
electrical grounding circuit design
•Heating (ohmic+nuclear) levels will require improved design due to 
thermal stress (note: nuclear heating <20% of total)
•Vacuum vessel heating limits are exceeded and will need further 
evaluation
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ELM Coil Design Details
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Legs Analyzed:
1)10 pipe poloidal
2)Toroidal 
3)8-pipe poloidal

Toroidal Model
•Cylindrical Model (IB & OB)
•5 degree sector with 45 cm height
•Uniform source (0.75 MW/m2)
•Reflecting boundaries
•2 cm gaps between BL modules
•CuCrZr conductor, MgO 
•ELM clamps not modeled

Poloidal Models
•Cylindrical Model (IB & OB)
•10 degree sector with 100 cm height
•Uniform source (0.75 MW/m2)
•Reflecting boundaries
•2 cm gaps between BL modules
•CuCrZr conductor, MgO 
•ELM clamps, Manifold brackets not 
modeled

Nuclear Heating Toroidal Leg Nuclear Heating 10-pipe Poloidal Leg

Mesh tally peak 1.4 W/cm3
Mesh tally peak 2.6 W/cm3

Toroidal Leg Peak Value
MgO Insulator

Fast neutron fluence (n/cm2) 2.13e20

Dose rate (Gy/sec) 172
CuCrZr conductor
CuCrZr dpa (dpa) 0.207

Nuclear heating (W/cm3) 1.24

10-pipe Poloidal Leg Peak Value
MgO Insulator

Fast neutron fluence (n/cm2) 1.89e20

Dose rate (Gy/sec) 282

CuCrZr conductor

CuCrZr dpa (dpa) 0.210

Nuclear heating (W/cm3) 2.39

• Clean CAD models not available for 40o sector of ITER
• Create a “wedge” model of upper ELM: 

• Detailed blanket modules, manifolds, ELM coils
• Uniform source in plasma region (0.75 MW/m2)
• Simplified IB and VV model
• Reflective boundaries on wedge

Source region

Use DAG-MCNP’s new conformal mesh tally feature
• needs tetrahedral meshes (can generate with Cubit)

• He production and nuclear heating on the 
Vacuum Vessel are also important

VV heating limits (0.4 W/cm3) exceeded 
along poloidal leg

1.2 W/cm3

ELM coil conductor:

Front 1 cm of VV:


