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Neutron production from 
helium-3 fusion is minimal 
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• High-energy neutrons:  
• induce radioactivity in the first wall; 
• do not allow for direct conversion. 

• 3He(3He,2p)4He advantages: 
• No direct neutron production 
• Negligible neutrons from side reactions 
• All reactants and products are stable 
→ Radioactivity concerns are minimized 

• Challenges: 
• Low fusion cross-section, need higher 
ion energies 
• Fuel cost and availability 

Neutron rate per watt 
of fusion (from fuel only)

Reaction Neutrons/s (MeV) 
D-T 4 × 1011 (14.1)

D-D 9 × 1011 (2.45)

D-3He 2 × 1010 (2.45)
3He-3He ~ 0 
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Helium-3 fusion experiments 

can benchmark the VICTER code 
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• 3He fusion: no molecular ions → easier to model 

• Experiments can help benchmark the VICTER code on spherically 

convergent ion flow, in its single-ion-species formalism* 

• VICTER models beam-background fusion reactions only 

(Vc=200 kV, Ic=60 mA, rc=0.1 m, p=2 mTorr) (Vc=200 kV, Ic=60 mA, rc=0.1 m, ra=0.2 m) 

Plots from VICTER code calculations 

*G.A. Emmert and J.F. Santarius, Phys. Plasmas 17, 013502 (2010).  



The HELIOS IEC device 
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• HELIOS was designed specifically for 3He fusion experiments*: 

• uses an external helicon plasma as source of ions 

• high density, allows for lower neutral pressure in chamber 

• single grid acts as cathode, 

  chamber walls as anode 

*G.R. Piefer et al., Fusion Sci. and Technol. 47, 1255 (2005). 

 



The HELIOS IEC device 
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10 cm 

Hydrogen helicon plasma 

1mTorr, 500 W, 500G 



3He fusion protons previously detected, 

higher fusion rates required 
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10 cm 
10 cm 

• Piefer, 2006: 3He fusion protons in an IEC device first detected. 

 

 

 

 

 

• Record rate: 1.1 × 103 reactions/s (Vc = -134 kV, Iion = 7 mA) 

• Too low for diagnostic investigations IEC physics with 3He fuel 

• e.g. reactant energy distributions, spatial profiles of fusion events 

• Campaign to increase 3He fusion rates: 

• raise the ion current extracted from the helicon ion source 

• enhance the high-voltage capabilities 



Helicon ion source has been upgraded with a 

quartz-to-metal seal 
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• New ion source discharge chamber: 

• custom-made assembly with a quartz-to-molybdenum seal 

• rated for up to 350 ºC, higher than the previous O-ring seal 

• removes need for a castable alumina heat shield 

→ fewer impurities, crucial for helium plasmas 



Characterization of the helicon plasma is 

needed for understanding how to optimize it 
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• Proper measurements of n0 and Te needed for: 

• confirming any progress in increasing these parameters 

• information for designing a new extraction system, currently a 

single grounded electrode with an aperture. 

• Previous attempts at characterizing this source: 

• a Langmuir probe, which melted at high rf power levels*; 

• a “witness plate” technique to determine the extracted ion 

current*; 

• a spectroscopic study based on a collisional-radiative model†, 

valid for hydrogen only: 

• n0 ~ 3−7 × 1011 cm-3 and Te ~ 4−6 eV for up to 1.5 kW rf 

power and 1.2 kG magnetic field. 

*G. Piefer, Ph.D. thesis (2006).      †E. Alderson, M.S. thesis (2008). 

 



Characterization of the helicon plasma: 

double probe in extraction region 
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• A double Langmuir probe and its associated circuit have been 

constructed to measure the plasma density and electron temperature of 

the helicon ion source. 

• Currents limited to the ion saturation 

current << electron saturation current, 

mitigating the heat load 

• Probe is electrically isolated, floats with 

the rf variation, intrinsically 

compensating for helicon plasma 

oscillations. 

4.8 mm 

• Probe electrodes: planar tantalum discs placed in the extraction region, 

near the helicon source aperture. 



Hydrogen plasma density near aperture 

reaches a maximum at 500-600 G 
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• n0 ~1-3×1011 cm-3 

• Te ~ 8-20 eV 

• Density does not 

increase monotonically 

with magnetic field 

• Maximum density 

achieved at intermediate 

pressure 



Helium-4 plasma density near aperture tend 

to increase with magnetic field 
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• n0 ~4-8×1011 cm-3 

• Te ~ 10-15 eV 

• Difficult to obtain a 

dense plasma at 1 mTorr 

• Density increases 

monotonically with 

magnetic field 



Heavier gases yield denser plasmas, but not 

necessarily higher currents 
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Increasing the ion current 

extracted from the helicon source 
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• Emission-limited extractable ion current: Bohm current ~ n0Te
1/2. 

• Approaches to increasing helicon plasma density: 

• Change of rf antenna from Nagoya type III to a twisted Nagoya 

geometry: ~50% increases observed*. 

 

 
 

 

 

 

• Change of magnetic field from uniform axial geometry to non-

uniform field: increase by factor of ~3-4 observed†. 
 

*D.D. Blackwell and F.F. Chen, Plasma Sources Sci. Technol. 6, 569 (1997). 

 

 

†H.D. Jung et al., IEEE Trans. Plasma Sci. 35, 1476 (2007). 

 



Changing B-field geometry yields denser 

plasma over a broad range of field strengths 
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A 

B 

C 



High-voltage capabilities 
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• Since 2009: 300 kV, 200 mA power supply 

• New high-voltage feed-through designed and constructed, to allow 

for higher voltage operation: 

• Longer surface paths to ground 

• Non-conducting materials: quartz, PVC 

HV cable 

BN stalk 

PVC 

Quartz 
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High-voltage capabilities 

16 

• Electrostatic model: much reduced electric fields, particularly near the 

vacuum interface, where failures typically occur. 

 

 

 

 

 

 

 

 
• Tests of the new HV voltage feed-through will be done once the 

construction of the new intermediate buffer and switching circuit is 

complete. 
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Summary and Conclusions 

• HELIOS is undergoing upgrades to increase the 3He-3He fusion rates: 

• Enhancing the high-voltage capabilities 

• New power supply, HV feed-through, switching system 

• Increasing the extractable ion current from the helicon source 

• Characterization of helicon plasma with double probe 

• Achieving higher rates will give way to: 

• Experimental studies of IEC physics with helium-3 fuel 

• Reactant ion energy distributions 

• Spatial profiles of fusion events 

• Comparison with VICTER code on spherically convergent ion flow. 




