

Optimization and Characterization of a Helicon Ion Source on an Inertial Electrostatic Confinement Device for Helium-3 Fusion G.E. Becerra, G.L. Kulcinski and J.F. Santarius

Fusion Technology Institute, University of Wisconsin–Madison

Summary

- The HELIOS inertial electrostatic confinement device is undergoing several upgrades to increase ³He-³He fusion rates to allow for diagnostic studies and benchmarking a numerical code on spherically convergent ion flow.
- The ion source is being optimized to maximize the extractable ion current via magnetic field and rf antenna geometries. A double probe has been constructed as the first step in characterizing the helicon plasma.

Inertial Electrostatic Confinement

- IEC devices are well suited for studying advancedfuel fusion reactions requiring higher ion energies, since ions are accelerated directly to fusionrelevant energies.
- Ions are accelerated radially due to the electrostatic field between two concentric electrodes or semitransparent grids. Atomic and molecular interactions with background neutral gas greatly degrade the ion energy spectrum.

Helium-3 Fusion

Neutron rate per watt of fusion (from fuel only)	
Reaction	Neutrons/s (MeV)
D-T	$4 \times 10^{11} (14.1)$
D-D	$9 \times 10^{11} (2.45)$
D- ³ He	$2 \times 10^{10} (2.45)$
³ He- ³ He	~0

- Research of IEC operation with ³He can yield better understanding of the reaction, with relevance to nuclear and solar physics.
- Experiments can benchmark the VICTER code on spherically convergent ion flow in its single-atomic-species formalism [1].

High Voltage

- A new high-voltage feed-through has been designed and built to take advantage of a new 300 kV power supply.
- The new design increases surface paths to ground by using non-conducting materials, significantly reducing electric fields, particularly near the vacuum interface, where stalk failures typically happen.

Contact: gbecerra@wisc.edu

*Research supported by the Grainger Foundation.

- [1] G.A. Emmert and J.F. Santarius, Phys. Plasmas 17, 013502 (2010).
- 2] G.R. Piefer, "Performance of a Low-Pressure, Helicon Driven IEC 3He Fusion Device," Ph.D. thesis, UW-Madison (2006).
- [3] D.D. Blackwell and F.F. Chen, *Plasma Sources Sci. Technol.* 6, 569 (1997).
- [4] H.D. Jung et al., IEEE Trans. Plasma Sci. 35, 1476 (2007). [5] E.C. Alderson, "Spectroscopic Diagnosis of a Dense Hydrogen Plasma Source," M.S. thesis, UW-Madison (2008).

• The ${}^{3}\text{He}({}^{3}\text{He},2p){}^{4}\text{He}$ reaction produces virtually no high-energy neutrons, plus all nuclei are stable. \rightarrow very reduced radioactivity levels and material damage to the walls due to neutrons.

Experimental Setup: the HELIOS IEC Device

- HELIOS is a spherical IEC device with an external helicon ion source, allowing for lower background pressure in the vacuum chamber to minimize the ion energy spectrum softening by chargeexchange reactions with neutrals.
- HELIOS was built specifically for helium-3 experiments, with a record fusion rate of $\sim 10^3$ reactions/s at -134 kV cathode voltage and 7 mA ion current [2], too low for diagnostic investigations of reactant ion energy distributions and spatial profiles of fusion events.

Helicon Ion Source

• The main way of increasing the extractable ion current (emissionlimited to the Bohm current $I_R \sim n_0 T_o^{1/2}$) is to make a denser plasma. Plasma densities in helicon sources can be increased by over 50% by changing the rf antenna from a Nagoya type III to a twisted Nagoya geometry [3].

• An additional factor of 3-4 can be achieved by applying a non-uniform magnetic field instead of a uniform axial one [4]. These modifications will be tested in the near future to increase the extractable ion current.

• The discharge chamber has been upgraded to include a quartz-to-molybdenum seal, in order to avoid o-rings and a ceramic heat shield and decrease impurity levels, which is crucial for helium plasmas.

• Proper measurements of n_0 and T_e are important because they would confirm any progress in increasing these parameters and would give information on the plasma parameters for designing a new extraction system, currently a single grounded electrode with an aperture only.

• Previous attempts at characterizing this source with helium have not been successful. A spectroscopic study based on a collisional-radiative model [5], which was only valid for hydrogen and low power levels, which yielded $n_0 \sim 3-7$ $\times 10^{11}$ cm⁻³ and $T_e \sim 4-6$ eV for up to 1.5 kW rf power and 1.2 kG magnetic field.

• An effort is taking place to characterize the plasma with a double probe, due to its intrinsic compensation for rf oscillations and its decreased heat load relative to a single Langmuir probe.

• A campaign is underway to enhance the ion current extracted from the helicon ion source, as well as the high/voltage capabilities of the system.

