Progress in Analyzing HAPL Tungsten Candidate First Wall Materials

B.B. Cipiti, R.F. Radel & G.L. Kulcinski June 3, 2004

Fusion Technology Institute University of Wisconsin-Madison

MADISCN

Helium Implantation in Tungsten Using the University of Wisconsin IEC Facility

- **Purpose:** To determine the effect of helium implantation on the surface morphology of tungsten coatings at high temperatures
- Why: To see if tungsten can serve as a suitable coating material for the HAPL first wall
- How: Use of high voltages to drive helium ions into tungsten cathodes held at high temperatures (800 to 1,200 °C)

UW IEC Chamber has Capability of High-Temperature Implantation at 10-100 kV

D⁺, 20 kV, 5 mA 2 mtorr, 1100 °C

Results Since the Last HAPL Meeting

- Ion implantation fluences were reported about an order of magnitude higher than actual
 - Secondary electron emission was measured and found to be much higher than previously thought
- Single crystal tungsten samples were obtained for future runs
- Experimental measurements reveal porous surface increases emissivity
- Tungsten foam samples were obtained from Ultramet and as-received samples were characterized.
- Initial irradiations have begun (45 kV and \approx 1,000 °C)

Secondary Electron Emission Off the Grid Wires is Much Higher than Expected

×

Helium and Deuterium Fluence Corrections,

Helium Fluence Scan (He⁺/cm²)

Previous	3x10 ¹⁷	1x10 ¹⁸	$2x10^{18}$	$4x10^{18}$	1x10 ¹⁹
Updated	1x10 ¹⁶	3x10 ¹⁶	1x10 ¹⁷	3x10 ¹⁷	6x10 ¹⁷

Helium Energy (20-80 keV)

& Temperature (730-1160 °C) Scans (He⁺/cm²)

Undeted	3x10 ⁻¹	
Opualed	JXIU	

Deuterium Run, 40 kV @ 1200 °C (D+/cm²)

Previous	2x10 ¹⁹
Updated	2x10 ¹⁸

Threshold for Pore Formation with 30 keV Helium Occurs at <4x10¹⁶ He⁺/cm²

Temperature Scan Was Performed at 3x10¹⁷ He⁺/cm² (5x10¹⁸ Was Reported Before)

Irradiation of W at High Temperature With Helium Ions Can Improve the Thermal Emissivity

Thermal Emissivity Coefficient of Tungsten Powder Metallurgy Samples

Jaworske and Beach-NASA Glen Research Center

Tungsten Single Crystal Sample

Tungsten Single Crystal will show how much the lack of grain boundaries will affect the helium pore formation (Obtained from Lance Snead, ORNL)

Tungsten Single Crystal Sample

Tungsten-Coated Carbide Foam Samples From Ultramet

Hafnium Carbide Tungsten Coating

> Tantalum Carbide Tungsten Coating

(front)

(back)

Tantalum Carbide High-Emissivity Tungsten Coating

As-Received Foam Tungsten-Coated Carbide Samples From Ultramet

Hafnium Carbide Foam Tungsten Coating

Tantalum Carbide Foam Tungsten Coating

Tantalum Carbide Foam High Emis. Tungsten Surface Coating

As-Received Foam Surfaces Are Rough

Hafnium Carbide Foam Tungsten Coating

Tantalum Carbide Foam Tungsten Coating

Tantalum Carbide Foam High Emis. Tungsten Surface Coating

As-Received Foam Surfaces Are Rough

Hafnium Carbide Foam Tungsten Coating

Tantalum Carbide Foam Tungsten Coating

Polished Tungsten Powder Met. Samples

1 µm

Tantalum Carbide Foam High Emis. Tungsten Surface Coating

Annealing at 1200 °C for 30 min. has Little Effect on the Foam Surface Morphology

W-Coated HfC As-Received

W-Coated TaC As-Received

High-ε W-Coated TaC As Received

W-Coated HfC Annealed

W-Coated TaC Annealed

High-e W-Coated TaC Annealed 16

Conclusions

- Incorporation of higher secondary electron emission required a restatement of helium ion fluences to W samples
 - Implication: Pore formation will occur at <4x10¹⁶ He⁺/cm² (30 min. reference HAPL chamber operation)
- Porous W surface can increase thermal emissivity
- As-received morphology of W-coated carbide foam samples have a rough, angular surface
- Annealing of W-coated carbide foam samples to 1,200
 °C causes little change to surface morphology
- Initial tests on W-coated carbide foam samples have been conducted up to 45 kV at 1,000 °C

Future Experimental Plans

- Determine the threshold for pore formation in single crystal tungsten (at high temperatures) using helium implantation
- Examine D + He effects on morphology of W surfaces bombarded at 1,000 to 1,200 °C
- Run foam samples in the IEC device
- Design pulsing capability into UW IEC facility