

ARIES Mission

Perform advanced integrated design studies of long term fusion energy embodiments to identify key R&D directions and provide vision for the U.S. fusion program.

ARIES Goal

Demonstrate that fusion power can be a safe, clean, and economically attractive option.

The ARIES program is unique worldwide

in ability to provide fully integrated analysis of power plant options including plasma physics, fusion technology, economics, safety, etc.

The ARIES Team Has Examined Numerous Fusion Concepts as 1000 MWe Power Plants

- TITAN <u>reversed-field pinch</u> (1988)
- ARIES-I first-stability tokamak (1990)
- ARIES-III D-³He-fueled tokamak (1991)
- ARIES-II and -IV second-stability tokamaks (1992)
- Pulsar pulsed-plasma tokamak (1993)
- SPPS stellarator (1994)
- Starlite study (1995) (goals & technical requirements for power plants & Demo)
- ARIES-RS reversed-shear tokamak (1996)
- ARIES-ST <u>spherical torus</u> (1999)
- Fusion neutron source study (2000)
- ARIES-AT advanced technology and advanced tokamak (2000)
- ARIES-IFE laser and HIB inertial fusion designs (2000-present)

D-³He Fueled ARIES-III: Easy Technology Shortens Time to Fusion Commercialization

- Main Technological Features
- Simple FS design
- Low radiation damage => permanent components
- Low radioactivity => safer design
- Easy maintenance => high availability
- Direct energy conversion => high efficiency
- Lunar ³He resources

Key Parameters

major radius 7.5 m aspect ratio 3 toroidal beta 24% fusion power COE

2650 MW 85 mills/kWh

The ARIES Program (Advanced Research Innovation and Evaluation Study)

The ARIES Team comprises key members

from major fusion centers: universities, national laboratories, and industry.

Expert groups and advocates

are brought in as needed to ensure flow of the latest information from the R&D program.

Workshops and "town meetings"

are held for direct discussion and dissemination of results.

The ARIES-ST Study Identified Directions for Spherical Torus Research Elevation View of ARIES-ST Power Core • ARIES-ST provided guidance for NSTX physics research. IB-Stabilize Plates (W) OB-Stabiliz Plates(W) • Modest size machines can produce significant fusion power, leading to low-cost development pathway for fusion. Key Parameters Centerpos[®] Shield major radius 3.2 m acuum Seals aspect ratio 1.6 He Headers-of Divertor& IB-Shield toroidal beta 50% 2980 MW fusion power

COE 80 mills/kWh

http://aries.ucsd.edu/ARIES

ARIES-AT: Combination of Advanced Tokamak Modes and Advanced Technologies

• Competitive cost of electricity • High thermal efficiency (60%) • High availability (85%)

- 1720 MW
- COE 55 mills/kWh

