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Introduction
In inertial fusion targets, neutrons born from fusion reactions will in-
teract with the fuel and surrounding materials. Neutrons can also be
useful as diagnostic tools for target experiments. Despite these impor-
tant features, accurate neutron transport codes have yet to be imple-
mented in some radiation hydrodynamics codes. Here we present a
quasi-analytic method for solving the one-dimensional neutron trans-
port equation that shows promise for use in radiation hydrodynamics
codes. This method also has the near-term use of creating accurate so-
lutions to benchmark problems, allowing for the verification of both
deterministic and Monte Carlo neutron transport codes.

Mathematical Development
Infinite Slab
The integral form of the one-speed, one-dimensional, time-dependent
neutron transport equation in an infinite slab is [2]
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where
• Φ is the total scalar flux,
• Φ0 is the uncollided flux,
• Σ is the neutron scattering plus absorption cross-section,
• Σ is the neutron scattering cross-section,
• and v is the neutron speed

Using an external source of S(x, t) = S0δ(x)δ(t)
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Figure 1: Neutron wavefronts for
infinite slab

The neutrons are confined
behind the wavefronts, given
by the Heaviside functions
H(t + x

v) and H(t − x
v), fig-

ure 1.
The Neumann Series is

used to decompose the
total flux into a sum of
the uncollided and col-
lided fluxes. The source
for the nth collided flux is
the (n − 1)th collided flux.
The reduced collision ansatz
[3],
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is used to obtain an expression for the nth shape factor

Fn(x, t)H(t +
x
v
)H(t− x

v
) =

n
2

∫ t

0

∫ ∞

−∞

dx′dt′

(t− t′)vt′

(
(t′)n−1

tn−1

)

× Fn−1(x′, t′)H
(

t− t′ − |x− x′|
v

)
H(t′+ x′

v
)H(t′ − x′

v
)

(4)

where F0 = 1.
The integration domain is moved into a dimensionless space, fig-

ure 2, using a dimensionless time variable, η′ = x′
vt′, and a dimen-

sionless space variable, τ′ = t′
t . Implementing this variable transfor-

mation, and extracting the Heaviside functions, the nth shape factor,

Eq (5) is found. The variable transformation decouples the time and
space integrals, allowing the dimensionless time integrals to be per-
formed analytically.
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Figure 2: Integration domain for infinite slab
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Infinite Sphere
The integral form of the one-speed, one-dimensional, time-dependent
neutron transport equation in an infinite sphere is [2]
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Using an external source that is pulsed in space and time, S(r, t) =
S0δ(r)δ(t)

4πr2 , the uncollided flux is
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Figure 3: Neutron wavefront for in-
finite sphere

The Neumann Series
method is again used to de-
compose the total flux into
a sum of the uncollided and
collided fluxes. The spheri-
cal coordinates reduced col-
lision ansatz [1] is used to
obtain an expression for the
nth shape factor:
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Figure 4: Integration domain for infinite sphere
The variable change to a dimensionless integration space is again

utilized:
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Finite Slab
The same steps for deriving the shape factor for an infinite slab can be
followed in deriving the shape factor for a finite slab. After applying
the reduced collision ansatz, the following expression is obtained:
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where b is the slab half-width. Due to the boundaries, the Heaviside
extraction will result in different expressions for each collision.

’= -1 

’ 

’= 

’= 1 

H(1- ’- + ’ ’) 

’= 1 ’ 

’ ’=-
b 

’ ’=
b 

H(1- ’- ’ ’+ ) 

Figure 5: Integration domain for n = 1 shape factor

where ηb = b
vt.

The integration domain is the infinite slab integration domain mi-
nus the area outside the boundaries. These areas subtracted off create
negative neutron sources, or depletion waves.
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Figure 6: Integration domain for n = 2 from H(1− 2ηb − η) depletion
wave
To obtain the n = 2 shape factor, the n = 1 shape factor is decom-

posed into three separate sources: the infinite slab source and the two
depletion waves. The infinite medium source yields the integration
domain shown in figure 5. The depletion wave yield the integration
domains shown in figures 6 and 7.
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Figure 7: Integration domain for n = 2 from H(1− 2ηb + η) depletion
wave
These two integration domains can be expressed generally as

H(1− 2ηb∓ η) [Integrals]− H(1− 4ηb± η) [Integrals]
and the integrals have the limits of integration given by figure 6 or 7.
Note that each depletion wave source results in a new depletion

wave, in addition to the original depletion wave. Therefore, each col-
lision will produce new depletion waves, with the corresponding in-
tegrals to evaluate, in addition to the previous waves already present.

Results
The τ′ integrations can be performed analytically and independently
of the η′ integrations. The η′ integrations are performed numerically,
using the Gauss-Legendre quadrature rule. Below, results for various
benchmark problems are shown for:
• the source strength, S0, is set to 1
• the neutron speed, v, is set to 1
• the scattering cross section, Σs, is set to 1
• the total cross section, Σ = Σs + Σa, is set to 1

Slab Geometry
The infinite and finite slab total fluxes for a pulsed source are shown
in figure 8. The infinite slab flux peak decreases with time, and the
neutrons are always confined between the wavefronts at t = ±x

v.

(a) For 1 and 3 mean free times

(b) For 5 and 9 mean free times

Figure 8: Total Flux for Infinite
Slab and Finite Slab of half-width
b = 2

Comparing the infinite slab
and finite slab fluxes:
• At 1 mft: neutrons have not

reached the boundary yet,
and the infinite and finite
medium results match.

• At 3 mft: neutrons have
started leaking out of the
medium. Alternatively,
the first depletion waves,
H(1 − 2ηb + η) and H(1 −
2ηb− η), have started cross-
ing the medium, affecting
the flux near the bound-
aries.

• At 5 mft: The first depletion
waves have almost com-
pletely crossed the medium,
and the peak finite medium
flux separates from the peak
infinite medium flux.

• At 9 mft: The next set of de-
pletion waves, H(1− 4ηb +
η) and H(1 − 4ηb − η), be-
gin to cross the medium.

Sphere Geometry
Figure 9a shows the total flux for early mean free times for a pulsed
source in an infinite spherical medium. The singularity from the un-
collided flux is pronounced at early mean free times. Figure 9b shows
the total flux at later mean free times. The singularity from the uncol-
lided flux is no longer prominent, and the flux is decaying with time.
The neutrons are always confined behind the wavefront at t = r

v.

(a) For 1, 2, and 3 mean free times (b) For 5, 7, and 9 mean free times

Figure 9: Total Flux for Infinite Sphere

Conclusions
A promising new method for modeling neutron transport has been
developed. This method leads to highly accurate solutions, and there-
fore is useful for producing benchmark results for code verification.
With additional features, this method will be useful for modeling neu-
tron transport for inertial confinement fusion systems.

Future Work
The method needs to be expanded to incorporate several more fea-
tures before it will be appropriate for radiation-hydrodynamics codes
used to model inertial confinement fusion implosions. These features
include
• Extension to finite sphere geometry
• Heterogeneous media
• Multi-group approximation for energy dependent transport
• Anisotropic scattering
Additionally, we plan to create benchmark solutions to finite slab ge-

ometry problems.
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