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I. INTRODUCTION

The proposed first wall protection scheme for the light ion beam reactor
LIBRA (Fig. 1) consists of an annular tube bank encircling the cavity of the
reaction chamber. Individual vertical tubes, identified as INPORTs, are made
of silicon carbide fiber, braided to produce a porous component. Liquid
lithium/lead, used as a coolant and breeder, flows axially within the INPORT
and also through the tube wall to develop a thin protective outer film as
indicated in Fig. 2. The tubes are elastically supported at both the top and
the bottom as shown by the preliminary design of Fig. 3. This would permit
relatively convenient assembly and would allow tensile preloading of the
INPORTs by means of the compression spring system. In addition, a modifi-
cation of this support mechanism could be used which allows end rotation,
essentially as a ball-and-socket joint.

The mechanical shock from the fireball is transmitted through the cavity
gas and produces a repetitive transverse pressure on the first two rows of
INPORTs. Key design considerations for the LIBRA cavity depend upon the me-
chanical response of the tubes under this dynamic loading. Previous analytic-

(1,2) However, out-of-plane

al calculations have been done for planar motion.
motion may be triggered by imperfections which would naturally occur in the
system. In the work which follows, the complete equations of motion are

derived using Hamilton's principle and variational calculus procedures.
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Figure 1. Schematic of LIBRA Reactor Chamber.
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NOMENCLATURE

- cross-sectional flow area

cross section of tube

flow velocity

mean velocity

elastic modulus of the tube
forcing function
gravitational constant
moment of inertia of tube section
kinetic energy

tube length

mass/length of fluid
mass/length of tube
internal mean pressure

time

absolute tension

static pretension

x displacement

potential energy

y displacement

z displacement

work done by nonconservative forces

axial coordinate
transverse coordinate
transverse coordinate

damping coefficient




u - amplification factor on fluid forcing frequency
v - Poisson's ratio for tube

2. - fluid forcing frequency

ITI. MODEL DESCRIPTION

The system under consideration (Fig. 4) consists of a uniform tube of
length 2 supported at each end. It has a cross-sectional area Ay, mass per
unit length my and flexural rigidity EI. The internal fluid flows axially
with velocity ¢, cross-sectional flow area Af and mass per unit length mg.
The mean pressure within the tube is p, measured above atmospheric.

In its undeformed (equilibrium) position the longitudinal axis of the
tube coincides with the x axis. With this vertical configuration, gravity
effects will be assessed. Free and forced response of the tube is allowed in
both the x-y and x-z planes along with longitudinal deformations.

In the problem formulation, various assumptions have been made concerning
both the tube and the fluid. They include:

1. The effects of rotary inertia and shear deformation of the
tube are neglected.

2. Nominal dimensions of the tube do not change significantly
with internal pressure or displacements.

3. External drag forces are neglected.

4. The fluid is viscous and incompressible.

5. Secondary flow effects and radial variations in the flow
velocity are neglected.

6. Only the mechanical response of the tube 1is considered;

thermal effects are not assessed.



0 -—

X!
xvl

1
/__L

Figure 4.

Tube Geometry and Coordinate System.




IV. DERIVATION OF THE EQUATIONS OF MOTION

An energy approach has been used to derive the equations of motion for

the system. Hamilton's principle can be expressed in the form

t2 t2

6§/ (K-uydt+ [ & dt=0 (1)
Y Y
where K and U represent the kinetic and potential energies, and W,c accounts

for the work done by nonconservative forces.

The kinetic energy associated with the motion of the tube is given by
1 au 2 v 42 oW 12
Kewpe =2 M | [GE)° + GGl + )71 ax (2)
where u, v and w are the displacement components in the x, y and z directions,
respectively.

For the fluid, the magnitude of the flow velocity ¢ may have a harmonic

component to include the possibility of pulsating flow, i.e.,
¢ =c,(l + ucos at) (3)

where c, is the mean velocity, u is the amplification factor and @ is the
forcing frequency. The velocity components of the fluid flow can be described
using Fig. 4, which shows the direction of ¢ tangent to the deformed tube
centerline. Thus, the kinetic energy due to the flowing fluid can be ex-
pressed as

g (el v Grrogl+ Grreg)la. @



It should be noted that nonlinear inertia effects from the fluid have not been
included.

The potential energy of the system consists of the elastic energy stored
in tension and the elastic strain energy due to bending. The contribution
from the axial load is

2
L _ [ 1% dx (5)

Utension ~ ?K;E’ 0
where T is the absolute tension in the tube. In general, this tension is
comprised of a number of components including a static pretensile load To and
the weight of the tube and fluid which results in a linear axial variation.
Also, since the lower end of the tube is not free and the fluid is allowed to
discharge into a pool, there will be an additional tensile term equal to
pAt(Zv - 1) for a thin tube. In order to take into account the possibility of
large amplitude motion, nonlinear tension effects can be included by consider-
ing higher order terms in the expression for the tube extension. Thus, the
tension can be written as

T =T, - pAy(l - 2v) + (m.+m)g(L- x) + EA, (9—5-5)3(—"5) (6)

where



(7)
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The strain energy due to bending is given by
82v 2w
3 EI ;—5 , EI-;~§ ) ()
1 X X
Upending = 267 . L o+ 7] dx .
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Using a binomial expansion, Eq. (8) becomes
1 . 32v 2 V2 ovy4
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The work done by nonconservative damping forces can be expressed as

2 ) 2

_ su av ow
ft S dt = ft fo N [‘aT Su dx + gz 6v dx + % Sw dx] dt (10)
1 1

where k, is considered to be an equivalent damping coefficient that inciudes

both internal structural damping and viscous damping due to the friction of

the tube with the surrounding medium. It should be noted that x, can be

0
adjusted to comply with the conditions of the problem.



Finally, substituting into Eq. (1) and employing variational calculus,

the three-dimensional equations of motion are

2 T (m. +m,)g
3" u 1o u _ f t _du
(me +mp) at_zJr Me 3t © oMt Bt AE +me + my)gfl - 5
2
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7 (ax) 27 (ax) 3 (ax)(’éx) ty (ax)(ax) ]- EAy a5 (11)

2 2 2
v v 2 9V ac v ov. _ 3 * 3v
(me +me) ~+ 20 gt M Ft Me g ax T KoMt 3t ax U Bx
4
au 3u 2 1 (ovy2 1 (0w 27 9v o'V
+ (EA, = T )[3§'_ (3§J t5 (5;) t 5 (5;) ] 3;} + EI v (12)
4 2.3 2
ovy2 9V dvyro vyrdTV 9°vy3
- 361 (B2)° 2= - 12k (RL)(E5)(E=S) - 3kl (=) = 0
9x ax4 X x ax3 ax2
2 2 2
3w 3w 2 9w ac oW w _ 3 * ow
(me +my) —7 4 2mee g * M 7t Me A t M s T ax U o
t ax
4
* oy (duy2 L L (dvy2 L1 (w27 ow 3w
t(EA - T )[32-' (§;J t5 (3;) t5 (3;) ] 3;} +El I (13)
4 2. .3 2
W2 9w oWy 93wy W 9"wH3
- 3EI (o) 22 - 1281 () (== )(EE) - 3k (&5)° =0
ox ax4 ox 3x2 3x3 8x2
*
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These equations are presented in general form with the order of the nonlinear
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terms high enough to cover a wider range of potential problems. When differ-
ent categories of problems are analyzed, simplifications will reduce the com-
plexity of the equations, e.g., negligible flexural stiffness, axial displace-
ments which are much smaller than lateral and transverse components, etc.

Such reductions will be developed for particular forced response cases.

V. FORCING FUNCTION

The primary external loading on the INPORTs is the mechanical shock from
the fireball that is transmitted through the cavity gas.(3) This occurs with
each dignition, typically between 1 and 5 Hz. Figure 5 shows the first two
rows of the tube bank with the dynamic radial pressure applied to one side of
an INPORT. This loading will have both a time and spatial variation in the
axial direction, i.e., F = F(x,y,t).

Although the forcing function, in this case, is considered to be strictly
planar, a nonplanar response of the INPORTs is expected. Such "whirling"
motion has been observed in both strings and beams subjected to planar excita-
tions.(4’5) For the proposed tube bank of LIBRA, further analysis will be
necessary to determine

1. the conditions for which out-of-plane motion will or will not
develop;
2. the magnitude of out-of-plane displacement; and

3. possible control or reduction of the displacement ampiitudes.

VI. CONCLUSIONS

The nonplanar equations of motion for free and forced vibrations of the

INPORTs have been determined. Nonlinear curvature and tension terms are in-

11
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Figure 5. Dynamic Pressure Loading on the INPORTs.
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cluded in the derivation to identify the coupling of longitudinal and trans-
verse modes. A planar forcing function is considered that could cause insta-
bilities in the system due to either large amplitude or out-of-plane motion.
General closed form solutions of such highly nonlinear coupled equations
are not possible. However, reductions in complexity will be wused for

particular problems when forced response calculations are made.
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