

Preliminary Considerations of Light Ion Beam Fusion and LIBRA Reactor Design

LIBRA Team

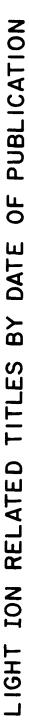
June 1982

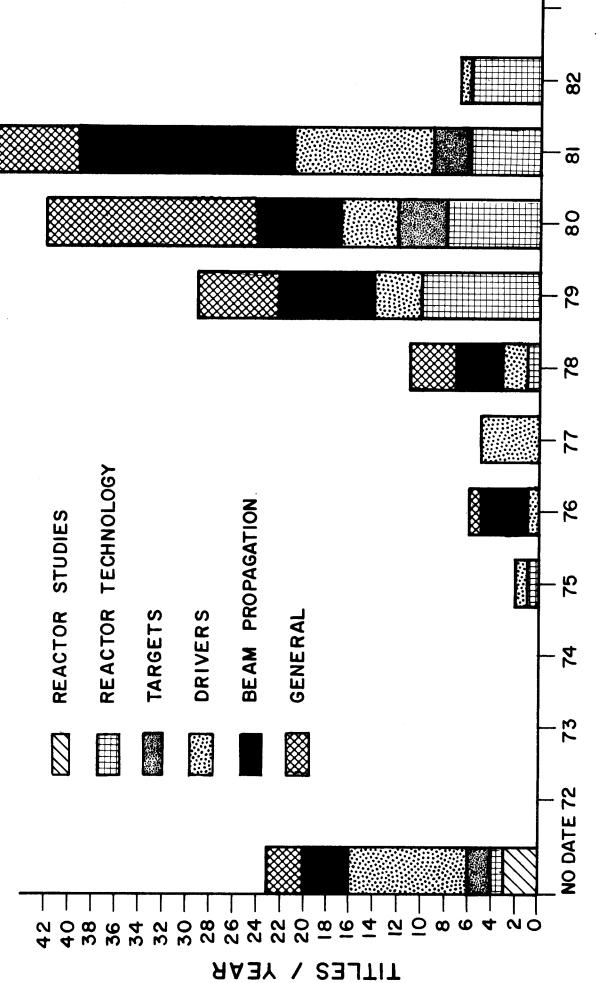
FPA-82-4

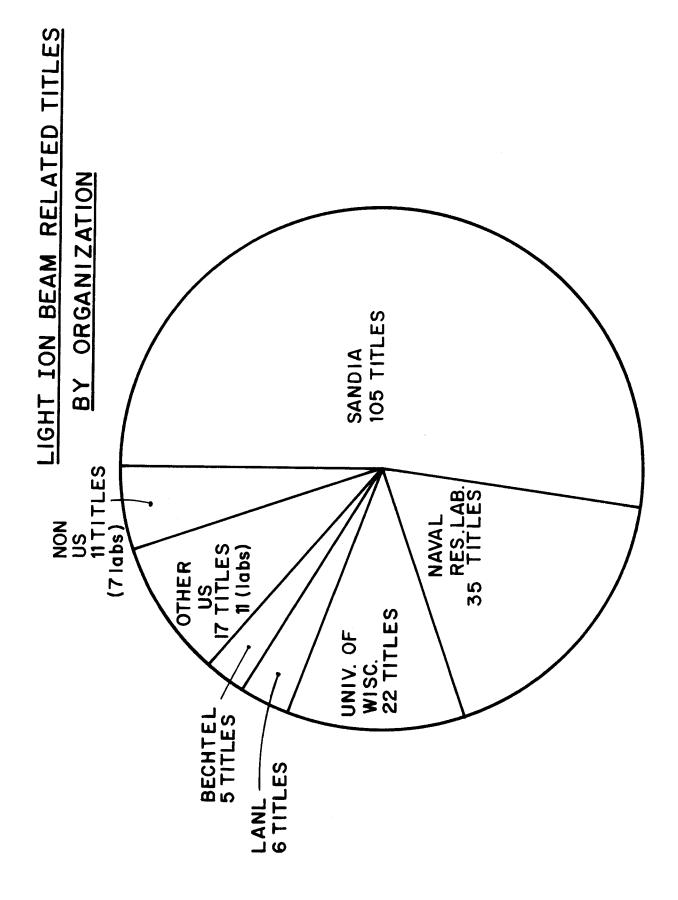
Presentation at KfK-Karlsruhe, FRG, 3-4 June 1982

FUSION POWER ASSOCIATES

2 Professional Drive, Suite 248 Gaithersburg, Maryland 20879 (301) 258-0545 1500 Engineering Drive Madison, Wisconsin 53706 (608) 263-2308


MAJOR ACTIVITIES IN LIBRA STUDY JANUARY – MAY 1982


- Literature Survey
- Review of Previous Studies
- Design Philosophy of LIBRA
- Preliminary Design Parameters of LIBRA


BASIS FOR LIGHT ION BEAM BIBLIOGRAPHY

- DEFENSE NON-FUSION APPLICATIONS EXCLUDED
- ELECTRON BEAM WORK EXCLUDED
- DRIVER WORK INCLUDED IF SPECIFIC TO LIGHT ION BEAM FUSION (DRIVER SUPPORT TECHNOLOGY MAY BE OMITTED)
- ALL TITLES INCLUDED REGARDLESS OF MERIT

SEARCH IS NOT COMPLETE SHOULD BE UP TO DATE BY FALL 1982

ORGANIZATIONS WITH PUBLICATIONS IN LIGHT ION BEAM RELATED RESEARCH

UNITED STATES OF AMERICA

SANDIA NATIONAL LABORATORY NAVAL RESEARCH LABORATORY LOS ALAMOS NATIONAL LABORATORY LAWRENCE BERKELEY LABORATORY LAWRENCE LIVERMORE NATIONAL LABORATORY ARGONNE NATIONAL LABORATORY

CORNELL UNIVERSITY UNIVERSITY OF ILLINOIS UNIVERSITY OF NEW MEXICO UNIVERSITY OF MARYLAND UNIVERSITY OF WISCONSIN

BECHTEL JAYCOR MAXWELL OCCIDENTAL RESEARCH PHYSICS INTERNATIONAL POWER CONVERSION TECHNOLOGY SCIENCE APPLICATIONS INC. TRW

ORGANIZATIONS WITH PUBLICATIONS IN LIGHT ION BEAM RELATED RESEARCH

OTHER THAN U.S.

ATOMIC WEAPONS RESEARCH ESTABL. (GREAT BRITAIN) NAGOYA UNIVERSITY (JAPAN) OSAKA UNIVERSITY (JAPAN) KURCHATOV (USSR) INSTITUTE OF NUCLEAR PHYSICS – TOMSK (USSR) UNIVERSITY OF TORONTO (CANADA) KERNFORSCHUNGSZENTRUM KARLSRUHE (FRG)

SOME DATES IN ION BEAM FUSION

1968 WINTERBERG

considered ions from field emission could be used to induce fusion in D–T

1974 BLAUGRUND and COOPERSTEIN – NRL

experiments on electron diodes suggested presence of ions from anode

1975 HUMPHRIES, LEE, SUDAN – CORNELL

demonstrated proton beam 130 keV @ 6000 A

1975 GOLDSTEIN and LEE – NRL

calculation of electron flow in diodes suggest using as a source of ions

1975 CLAUSER, SHEARER – SANDIA, LIVERMORE

noted excessive power requirements for electron beam fusion — presented ion beam target considerations

1979 SANDIA LABORATORY

changes emphasis from electron beam to light ion beam fusion

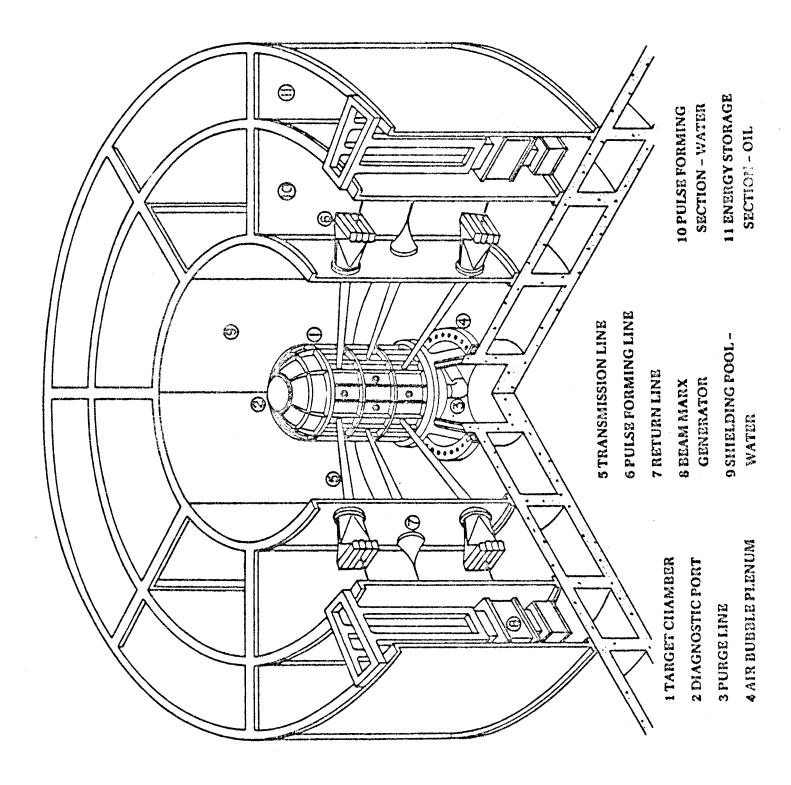
SUMMARY OF U.S. FUNDING FOR ICF PARTICLE BEAM RESEARCH

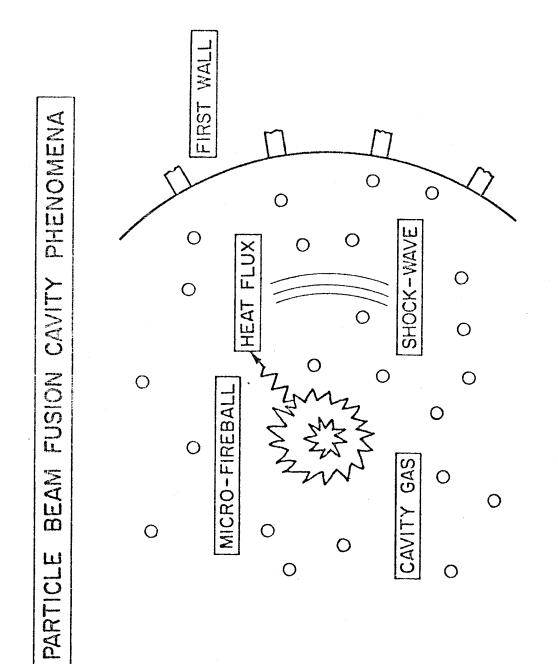
YEAR	FUNDS PER YEAR (million \$)	TOTAL FUNDS TO DATE (million \$)
73	3	3
74	4	7
75	7	14
76	9	23
77	18	41
78	12	53
79	~13	66
80	~ 15	81
81	16	97
82	~17.5	115

LIGHT ION BEAM STUDIES

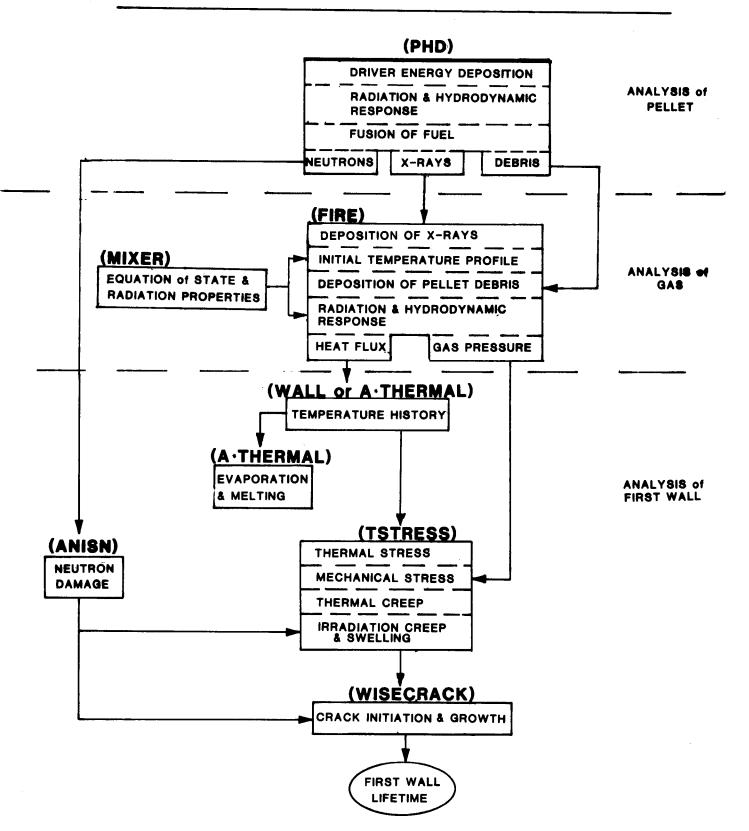
	UW – SNL	TRW	BECHTEL-EPRI
DATES	'78 – '82	'79 – '80	'81 <i>–</i> '82
DESIGN	Single Shot Test Facility	Experimental Accelerator	Test Reactor (Phase III)
SCOPE	Nuclear Island	Accelerator, Beam Transport	Critical Issues (Phase II) Complete Reactor (Phase I)
ION	8 MeV He + +	10 MeV He +	150 MeV Ne +
DRIVER	Pulse Power Diode	Multi-Stage Electrostatic	Induction Linac
PROPAGATION	Pre-formed Plasma Channel	Neutralized Ballistic	Self Pinched

LIGHT ION BEAM STUDIES

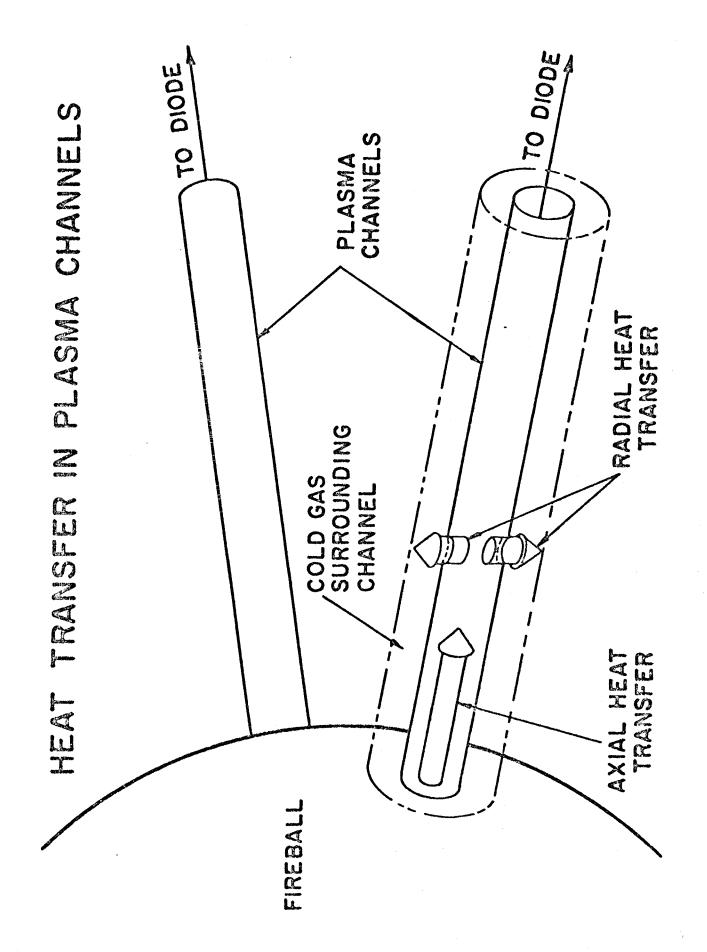

	UW – SNL	TRW	BECHTEL-EPRI
# OF BEAMS	40	40	2
		• •	-
CAVITY GAS	20 torr Ar + 0.2% Na	10 ⁻³ torr Li	5.6 torr Xe
REP. RATE	10/day	_	3 Hz
DRIVER STANDOFF	4 m	10 m	5 m
DRIVER ENERGY (ON TARGET)	>4 MJ	2 MJ	5.8 MJ
(ON TARGET)			
DRIVER POWER (ON TARGET)	>1 00 TW	1 50 TW	200 TW
TARGET YIELD	> 200 MJ		300 MJ
FIRST WALL	Buffer		Li Fog
PROTECTION	Gas		


LIGHT ION BEAM FUSION TARGET DEVELOPMENT FACILITY (UW – SNL)

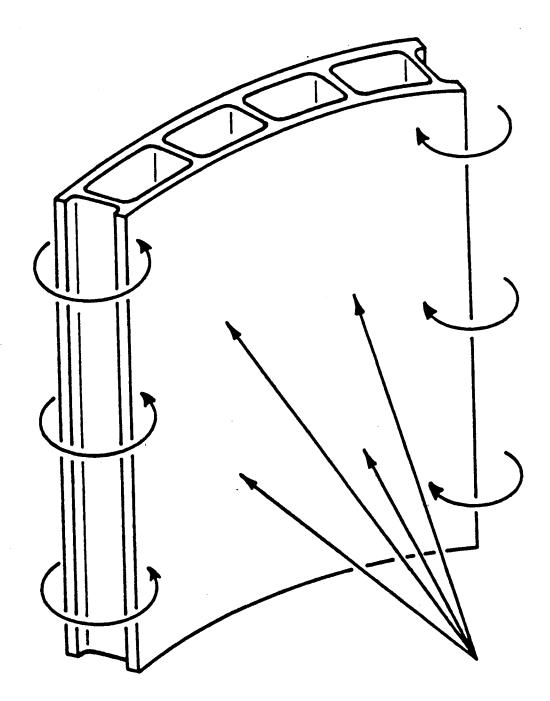
- FIRST ICF "NUCLEAR FACILITY" TO STUDY HIGH YIELD (200 MJ) TARGETS
- TO BE BUILT AFTER PBFA-II
- SHOT RATE OF 10/DAY FOR LIFETIME OF 5 YEARS (1.5x10⁴ SHOTS)
- MULTIPLE ION DIODES AND TRANSPORT IN PLASMA CHANNELS
- APPROXIMATELY 4 MJ OF ION ENERGY ON TARGET


LIST OF TOPICS

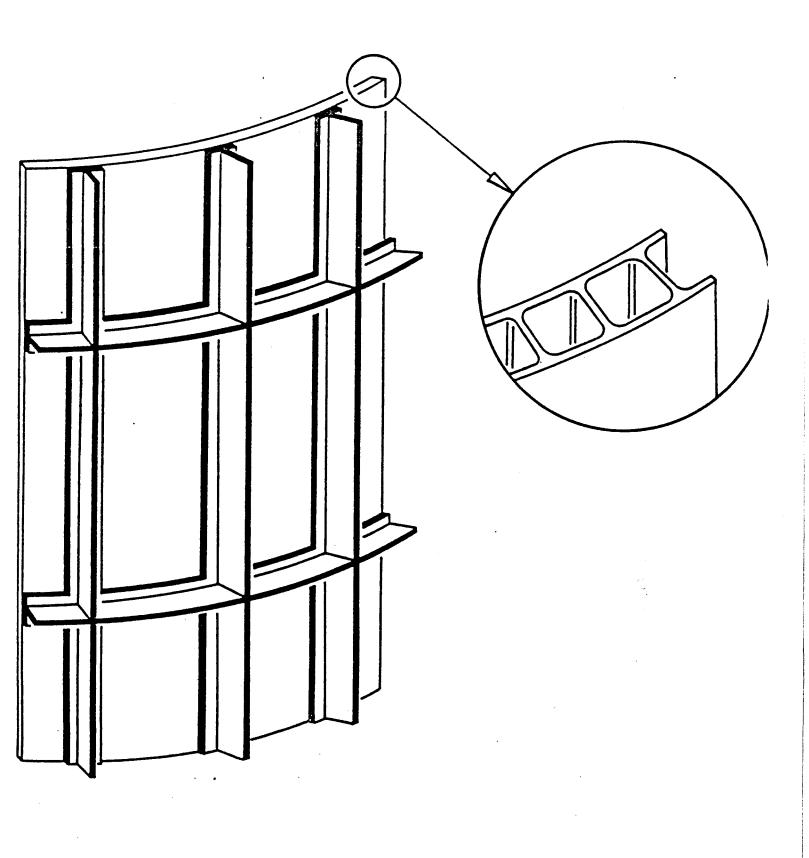
- CONCEPTUAL DESIGN OF TDF TARGET CHAMBER
- CODE DEVELOPMENT
- CANDIDATE FIRST WALL MATERIALS
- **RESPONSE OF TARGET CHAMBER GAS**
- THERMAL RESPONSE OF FIRST WALL AND FRAME
- RADIOACTIVITY
- **RADIATION SHIELD AND MAINTENANCE**.

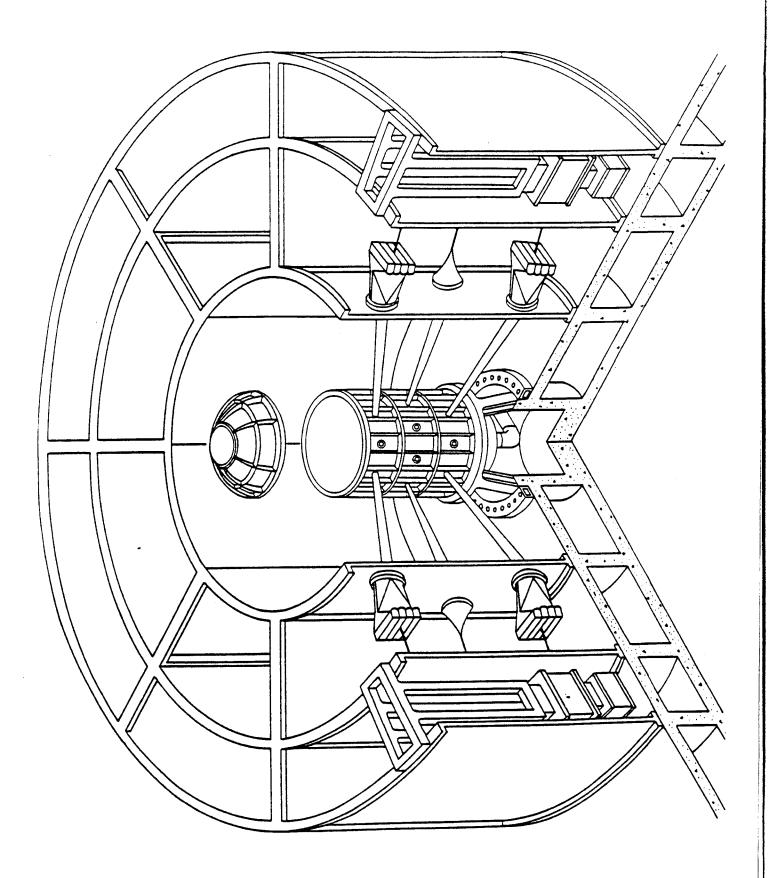


COMPUTER CODES DEVELOPED AT UW FOR THE ANALYSIS OF ICF CAVITIES PROTECTED BY A BUFFER GAS

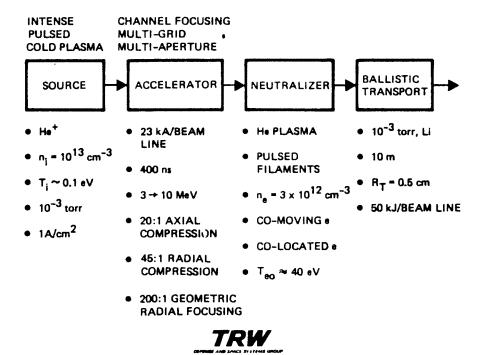


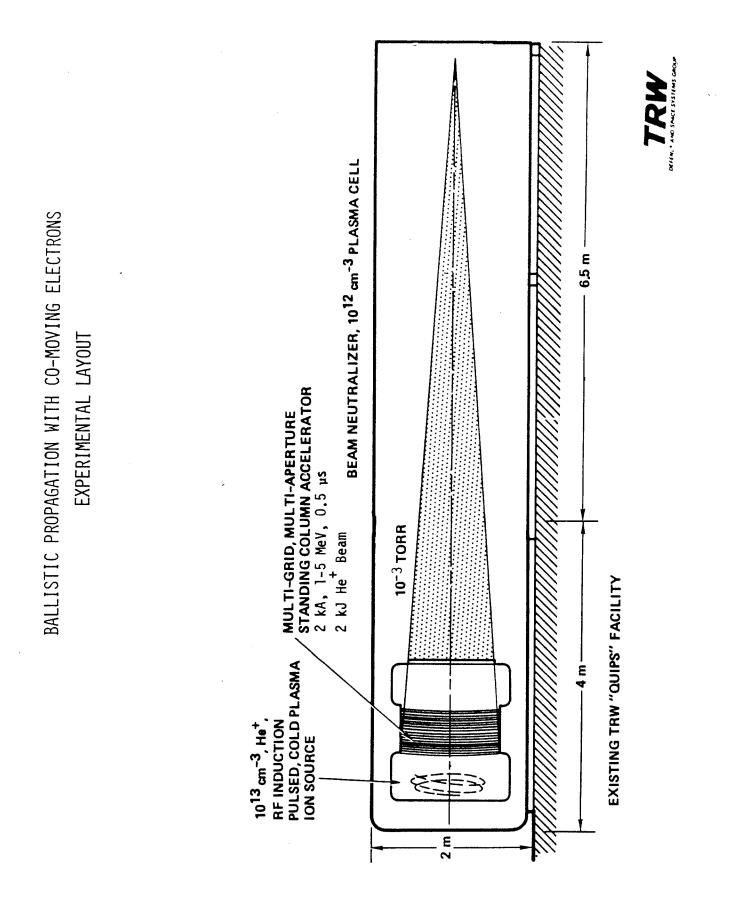
....

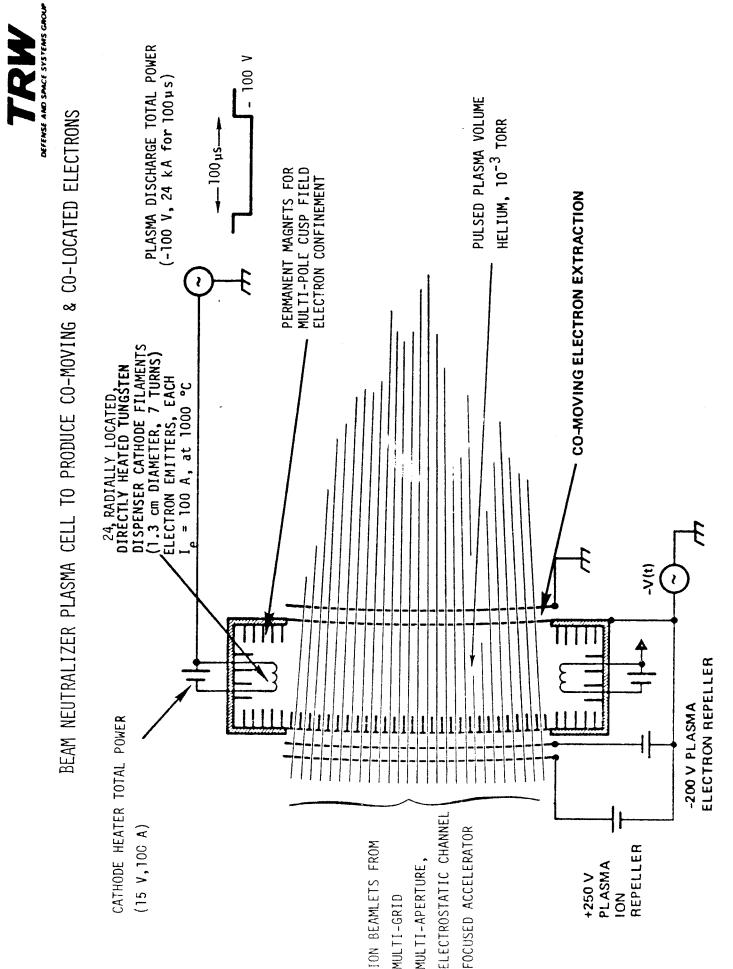



The second s

CELLULAR WALL IN DYNAMIC FLEXURE




CONCEPTUAL FIRST WALL STRUCTURAL SYSTEM



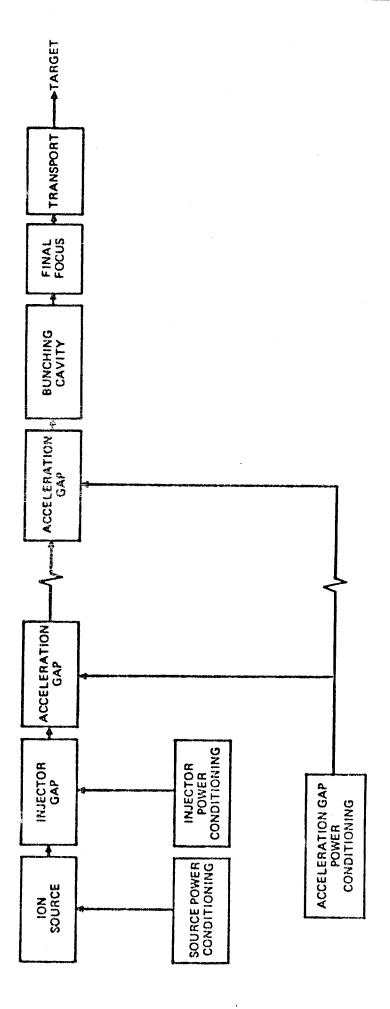
L.I.F.E. SINGLE BEAM PARAMETERS FOR A 2 MJ, 150 TW, 95 TW/cm², 40 BEAM-LINE ICF DRIVER SYSTEM

\$

,

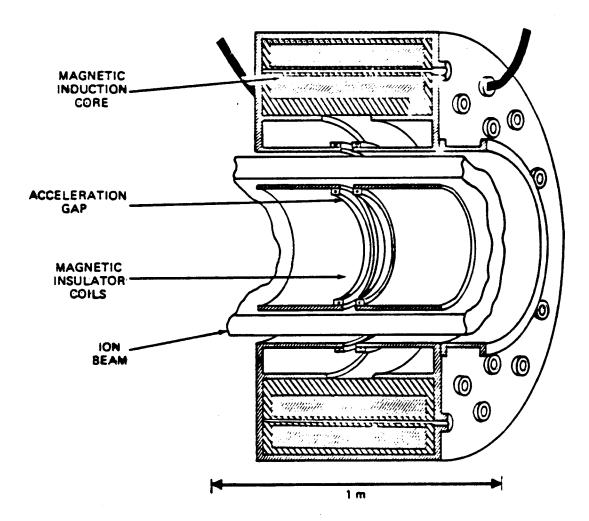
"EAGLE" DEMONSTRATION REACTOR PARAMETERS

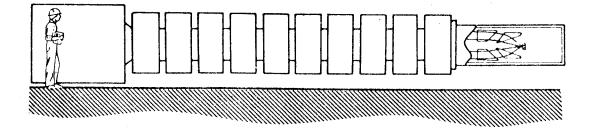
DT POWER	990 MW
GROSS THERMAL POWER	1 040 MW
GROSS ELECTRICAL POWER	380 MW _e
NET ELECTRICAL POWER	290 MW _e
TARGET YIELD	300 MJ
TARGET GAIN	60
TARGET REP. RATE	3 Hz
REACTOR COOLANT AND BREEDER	LITHIUM
REACTOR STRUCTURAL MATERIAL	HT-9
FIRST WALL PROTECTION	LITHIUM FOG
CAVITY GEOMETRY	4 m RADIUS
	CYLINDER

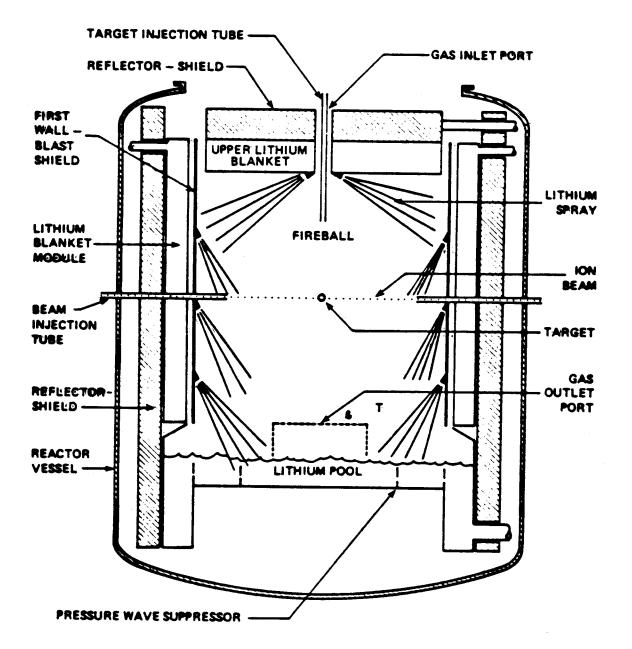

LINEAR ACCELERATOR PARAMETERS

- EFFICIENCY32 %BEAM TRANSPORT EFFICIENCY80 %OVERALL DRIVER EFFICIENCY25 %
 - ION Ne⁺
 - ION ENERGY 150 MeV

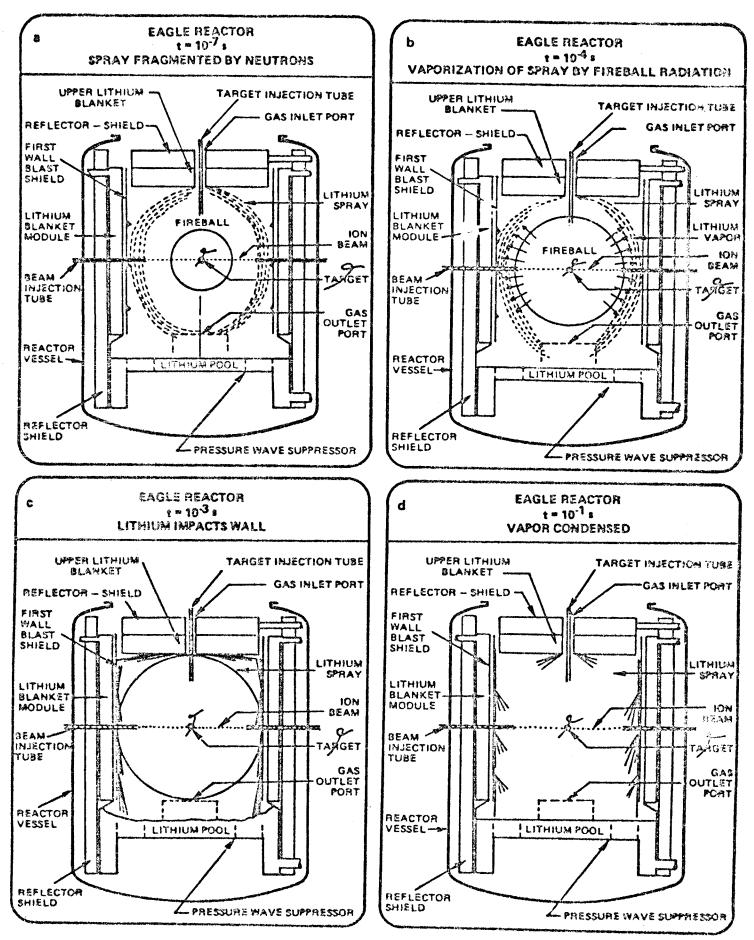
VOLTAGE PER STAGE	3 MV
BEAM CURRENT	300 kA
#OF BEAMS	2
TOTAL ENERGY ON TARGET	5.8 MJ


ACCELERATOR PULSE LENGTH	80 ms
PULSE LENGTH ON TARGET	30 ms
TOTAL POWER ON TARGET	200 TW
REACTOR CHAMBER GAS	Xe
GAS DENSITY	$2x10^{17}$ cm ⁻³
•	


(5.7 torr)


•

Accelerator Power Flow Diagram



Pulselac-D Fusion Test System. Scale drawings of accelerator and detail of one cavity.

ENERGY ABSORBING GAS LITHIUM EJECTOR

Interaction of Shock and Spray

DECISIONS	IMPLICATIONS	OPTIONS
Objective of	Depth and Timing	• Full Scale "HIBALL" Type
Study	of Study	 Nuclear Island Only "TASKA"
		• Critical Issues
Type of Reactor	Level of Technology	•Commercial Reactor
	and Physics	• Demonstration Reactor
	Assumptions	• Test Reactor
Level of Physics	The Limit of	• 1990
and Technology	Extrapolation	•2000
Assumed	Allowed	•2010

.

DECISIONS	IMPLICATIONS	OPTIONS
Power Level	Special Market or	• ~ 100 MW _{th}
of Reactor	Competition with Large	•500-1000 MW _{th}
	Scale PWR's & Coal Plants	• > 3000 MW _{th}
Ultimate Fusion	Inclusion of Fission	• Electricity Producer Only
Product	Technology	• Process Heat
		• Synthetic Fuels
		• Fissile Fuel Producer
Driver Approach	"Conventional" or	• Pulsed Power-Diode
	Innovative	• Multi-stage

DECISIONS	IMPLICATIONS	OPTIONS
Type of lon	Target Design, Source	• Electrons
	Credibility, and Focussing	• Protons – 1-3 MeV
		•Light lons, Z = 2-6, 3-16 MeV
		•Welterweight Ions, 3 MeV/amu,
		6 < Z < 30
Target Type	Fabrication, Injection,	•Single Shell
	Required Ion Intensity,	• Double Shell
	Gain	•Cryogenic vs. Room Temp.
Illumination	Target Design, Reactor	• Axisymmetric
Uniformity	Design	• Uniform
		•2-Sided

IMPLICATIONS	OPTIONS
Level of Target Sophistication	$(\bullet G = 20)(E = 4 MI)$
Level of Conservatism	$\begin{cases} \bullet G = 20 \\ \bullet G = 80 \\ \bullet G = 120 \end{cases} \begin{cases} E = 4 MJ \\ E = 8 MJ \\ E = 12 MJ \end{cases}$
	$(\bullet G = 120)(E = 12 MJ)$
Cavity Gas Recycle, Beam	• 1 – 2 Hz
Transmission, Number of	•2 – 5 Hz
of Cavities	•5 – 10 Hz
Power Level, Cavity Gas	• 1
Recycle	•2 - 4
	Level of Target Sophistication Level of Conservatism Cavity Gas Recycle, Beam Transmission, Number of of Cavities Power Level, Cavity Gas

DECISIONS	IMPLICATIONS	OPTIONS	
Beam Transmission Scheme	Cavity Gas Pressure, Need for Pre-Ionizing Laser Pulse	• Ballistic • Preformed Plasma Channels • Self—Pinch Transport	
Cavity Gas and Pressure	Protection of First Surface	•N ₂ •Ar •Ne 10, 50, or 100 torr	Na Li Cs
First Wall	Lifetime and Cavity Size	 Dry Wall [C (ceramic), Steel (Metallic)] Wetted INPORT Units ("HIBALL Type") Free Jets ("HYLIFE Type") Mist ("EAGLE Type") 	

DECISIONS	IMPLICATIONS	OPTIONS
Blanket	Compatible with Pulsed Loads	• Solid Breeder (Li ₂ O, Li ₄ SiO ₄) • Liquid Metals (PbLi, Li)
Shield	Maintenance Schemes	• "Traditional" • Swimming Pool
Power Cycle	Need for Secondary Loop	•Dbl. Wall HX (Liq. Metal to Steam) •Intermediate Loop H ₂ O •Intermediate Loop Liquid Metal

-

	OPTIONS
BOP Need for A & E	•Reactor Bldg. Only
	•Complete Power Plant
Competition with Fission,	•< 1500 \$/kW _e (1982)
Fossil or other	•2500 \$/kW _e (1982)
Fusion Plants	• < 50 mills/kWh (1982)
	•Capital Cost Limit
	(0.5, 1.0, 1.5 B\$)
	Competition with Fission, Fossil or other

MULTISTAGE ACCELERATOR – PULSELAC

ADVANTAGES

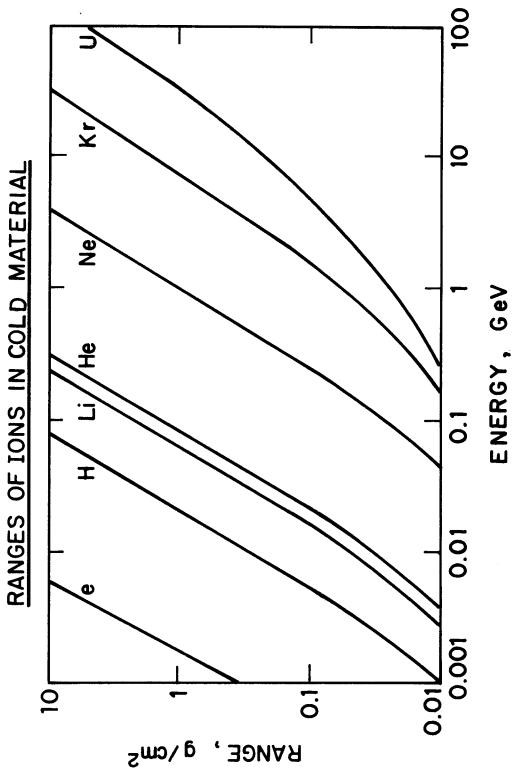
- POTENTIALLY REP. RATEABLE TECHNOLOGY
- POTENTIAL LOW COST

DISADVANTAGES

- EXTREMELY LITTLE EXPERIMENTAL DATA
- NO PLANS TO BUILD SUCH A DEVICE

PULSED POWER – DIODE

ADVANTAGES


- Based upon mature technology
- Confident cost scaling

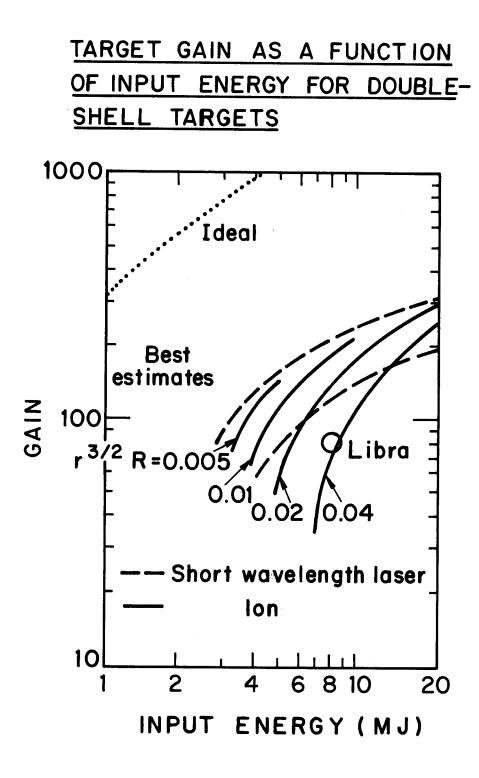
DISADVANTAGES

- Component lifetime
- Rep. rateable diode not yet developed

TYPE OF ION

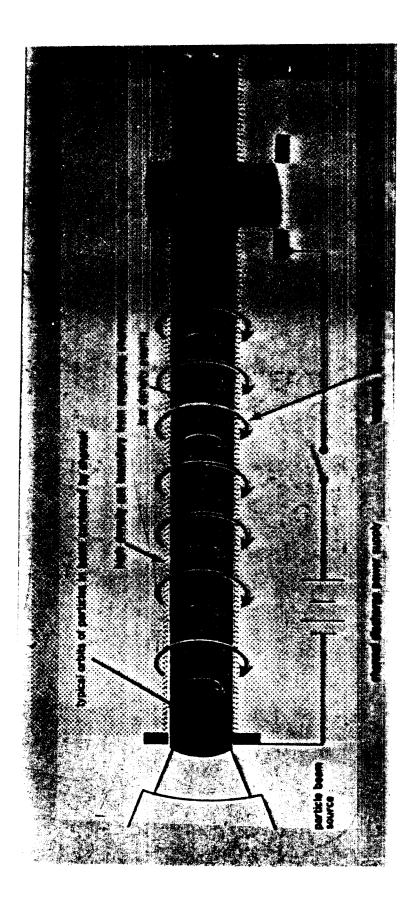
- ELECTRONS ARE NO GOOD RANGE IS TOO LONG
- PROTONS ARE CONVENIENT FOR PRESENT EXPERIMENTS BUT THEY MAY BE TOO LIGHT FOR GOOD FOCUSSING
- LITHIUM AND CARBON ARE BEING ACTIVELY STUDIED AS CANDIDATES IN THE 3 – 15 MeV ENERGY RANGE.

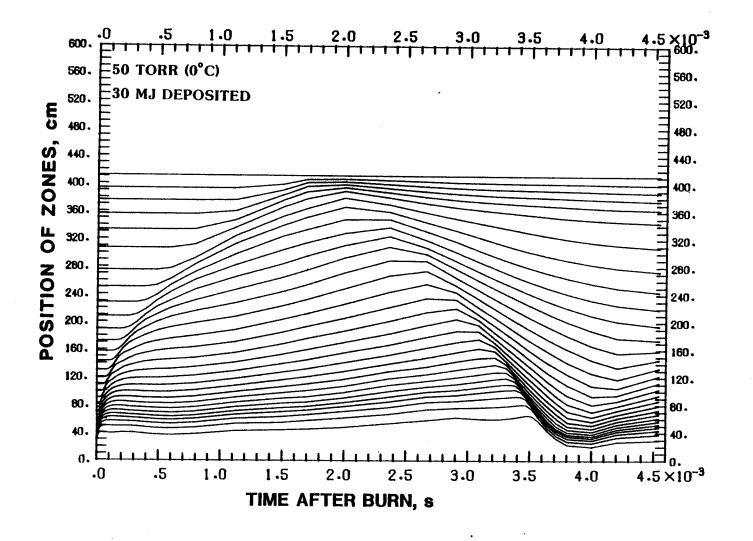
TYPE OF TARGET

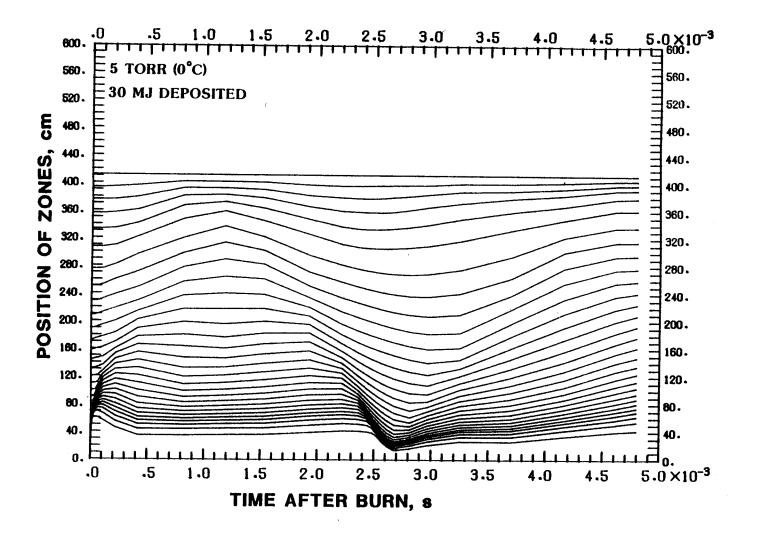

• CRYOGENIC FOR GAIN ≥ 20

• SINGLE SHELL

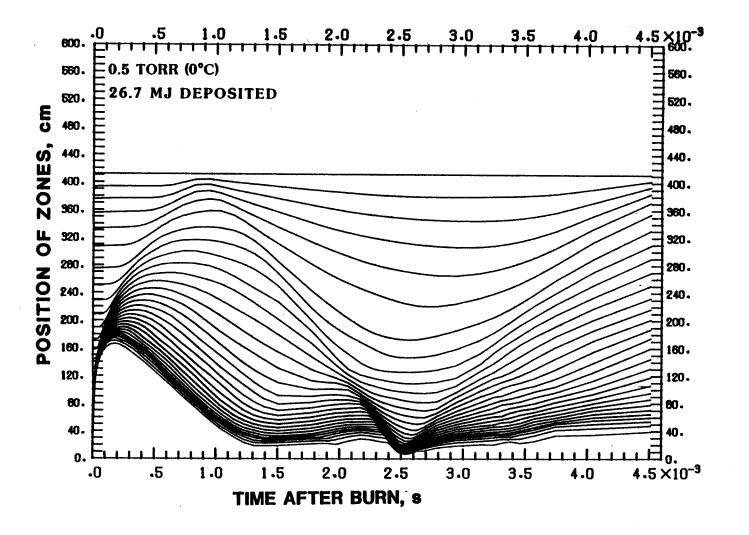
$$\label{eq:intensity} \begin{split} \text{INTENSITY} &\geq 200 \ \text{TW/cm}^2 \\ \text{PULSE SHAPING REQUIRED FOR G} > 20 \end{split}$$

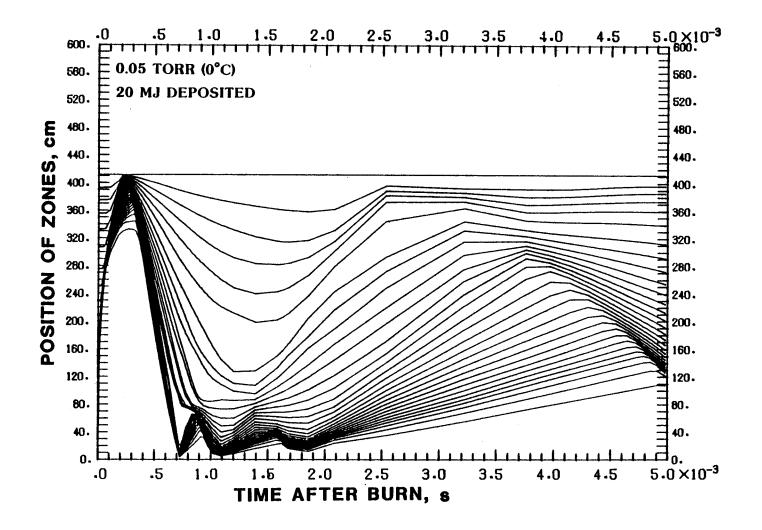

• DOUBLE SHELL


$\frac{1}{1} \text{INTENSITY} \ge 50 \text{ TW/cm}^2$ LESS PULSE SHAPING REQUIRED


REPETITION RATE

- CAVITY GAS MUST BE COOLED BEFORE NEXT SHOT
- CAVITY GAS MUST HAVE LOW RESIDUAL IONIZATION LEVEL TO FORM PLASMA CHANNELS
- TURBULENCE MUST BE LOW TO FORM PLASMA CHANNELS




The position of the Lagrangian zones as a function of time for a density corresponding to 50 torr (0°C).

The position of the Lagrangian zones as a function of time for a density corresponding to 5 torr (0°C).

The position of the Lagrangian zones as a function of time for a density corresponding to 0.5 torr (0°C).

The position of the Lagrangian zones as a function of time for a density corresponding to 0.05 torr (0°C).

P FUSION	960 MW
P _{ELECTRIC} (GROSS)	384 MW _e
P _{ELECTRIC} (NET)	300 MW _e

TARGET YIELD TARGET GAIN	640 MJ	
TARGET GAIN	80	
ENERGY ON TARGET	8 MJ	
REPETITION RATE	1.5 Hz	

ION TYPE	Li +
ION ENERGY	8 MeV
PULSE LENGTH	20 ns
ION POWER	400 TW
NO. OF DIODES	25
ION CURRENT/CHANNEL	2 MA
AVE. CHANNEL DIAMETER	1.2 cm
AVE. CHANNEL CURRENT DENSITY	0.44 MA/cm ²

OVERLAP RADIUS AT TARGET	3 cm
BEAM DIVERGENCE HALF-ANGLE	0.1 rad

ACCELERATOR TYPE	PULSED POWER-DIODE
ACCELERATOR EFFICIENCY	40 %
ION GENERATION EFFICIENCY	70%
ION PROPAGATION EFFICIENCY	70%
TOTAL DRIVER EFFICIENCY	20%

TARGET TYPE	DOUBLE SHELL-CRYOGENIC
TARGET DIAMETER	1.2 cm
TARGET INJECTION TIME	25 ms

CAVITY GAS PRESSURE CAVITY GAS DENSITY CAVITY GAS TYPE CAVITY GAS TEMP. BEFORE SHOT 5 – 20 torr 1.8 – 7x10¹⁷ cm⁻³ Ne or Ar + 0.2% Li < 800⁰C

CAVITY RADIUS CAVITY SHAPE

5 m CYLINDRICAL

FIRST WALL DESIGN FIRST WALL MATERIAL FIRST WALL PROTECTION COOLANT AND BREEDER

PANELS & FRAME HT-9 INPORT CONCEPT Li₁₇Pb₈₃

NEUTRON WALL LOADING	1.5 MW/m^2
BLAST OVERPRESSURE	?
BLAST HEAT FLUX	?
COOLANT OUTLET TEMPERATURE	≤ 600 ⁰ C

BLANKET TRITIUM INVENTORY 1 mg/tonne

AREAS TO BE ADDRESSED IN LIBRA STUDY FROM JUNE - DECEMBER 1982

- Develop First Order List of Reactor Parameters
- Initiate Cavity Gas Recycle Analysis
- Examine Ion Source Options Diode vs. Multistage

LIGHT ION BEAM

BIBLIOGRAPHY

Argonne National Laboratory

Magelssen, G.R. no date X-Ray and Pressure Conditions on the First Wall of a Particle Beam Inertial Confinement Reactor

Bechtel Corp.

no author Light Ion System Analysis and Design Phase I: Engineering Test Reactor Goal Spe Final Report (DRAFT)	4/1982 ecification
Thomson, S. Electron Beam Fusion-Fission Reactor Systems Study	12/1978
no author Viewgraphs relating to EAGLE Reactor	no date
Allen, W.O. Light Ion System Analysis and Design	no date
Caird, J.A. Allen, W.O. Technical Research and Development Project 90307	1980
no author 1075 MWe Electron Beam Fusion-Fission Power Plant Captial Cost Estimate	10/1978
Cornell University	
Nation, J.N. Sudan, R.N. editors Proc. of the 2nd Intl. Topical Conference on High Power Electron and Ion Beam Rese Technology, 3-5 Oct. 1977 (2 Vols.)	10/1977 earch and
Electric Power Research Insitute	
EPRI AP-1371 Brueckner, K.A. et al. Assessment of Drivers and Reactors for Inertial Confinement Fusion Final Report	2/1980
Euratom – C.E.A.	
Chevallier, J. et al.	no date

Pulsed Electron Beam Generators Operating in C.E.A.

International Atomic Energy Agency	2
Kuswa, G.W. Progress Toward Fusion with Light Ions (SAN)	7/1980
Cooperstein, G. et al. Progress at NRL and Cornell in Light Ion Beam Research for ICF (NAV)(COR)	7/1980
JAYCOR, Inc.	
Sandel, F.L. et al. Experimental Studies of Intense Light-Ion Beam Transport	7/1981
AD-A-081958 Mako, F. Investigation of Collection Ion Acceleration Using Intense Relativistic Electron Bear Report, 11 Dec. 1978 – 13 December 1979	2/1980 ms Final
Kurchatov Institute of Atomic Energy	
Bogolyubskij, S.et al. Demonstration of the Possibility of Using Electron Beams for Heating Thermonuclear T	no date argets
Baranchikov, E.let al. Transfer and Focusing of High-Current Relativistic Electron Beams onto a Target	no date
Lawrence Berkeley Laboratory	
LBL-10301 Guiragossian, Z. Hermannsfeldt, W (editor) Light Ion Fusion Experiment (LIFE) Accelerator System for ICF	9/1980
Lawrence Livermore National Laboratory	
Bangerter, R.O. et al. Stability and Symmetry Requirements of Electron and Ion Beam Fusion Targets	no date
Los Alamos National Laboratory	
LA-7014-MS Bohachevsky, I.O Scaling of Reactor Cavity Wall Loads and Stresses	11/1977
LA-8327-MS Slaughter, M.D. A Numerical and Theoretical Analysis of Some Spherically Symmetric Containmen Problems	4/1980 It Vessel
LA-UR-81-1408 Guiragossian, Z.G. et al. Method of Active Charge and Current Neutralization of Intense Ion Beams for ICF	1981
LA-UR-81-1873 Lemons, D.S. Electron-Temperature Requirements for Neutralized Inertial-Confinement-Fusion I Beams	1981 _ight-lon
LA-UR-81-2989 Bangerter, R.O. Mark, J.W-K. Meeker, D.J. Target Gain for Ion Driven Inertial Targets	1981

Riepe, K.B. Stapleton, R.E. Electron-Beam-Controlled Gas Lasers: Discussion from the Electrical Design of Very High Energy Systems	no date n the Engr. Viewpoint Part II. Problems in
MOD (PE) Atomic Weapons Research Laboratory	
Martin, J.C. Short Pulse High Voltage Systems	no date
Maxwell Laboratories	
Harrison, J. et al. Compact Electron Beam Generators for Laser and Fus	no date ion Research
Harrison, J. et al. Design of Very Fast Rise and Fall Time, Low Impeda Excitation	no date nce Megavolt Pulse Generators for Laser
Nagoya University	
Kubota, Y. Miyahara, A. K 2 MV Coaxial Marx Generator for Producing Intense Re	awasaki, S. no date lativistic Electron Beams
Naval Research Laboratory	
AD-1–076154 Ottinger, P.F. Mosher, D. C Electromagnetic Instabilities in a Focused Ion Beam Pr Interim Report	
NRL 4380 Raleigh, M. et al. Laser-Initiated, Reduced Density Channels for Transpor	2/1981 ting Charged Particle Beams
NRL MR-3784 Ottinger, P.F. Mosher, D. O Microstability of a Focussed Ion Beam Propagating Thr	
NRL MR-4088 Ottinger, P.F. Mosher, D. O Electromagnetic Instabilities in a Focused Ion Beam Pr	
NRL MR-4387 Cooperstein, G. et al. NRL Light Ion Beam Research for Inertial Confinement	11/1980 Fusion
NRL MR-4397 Mosher, D. Colombant, D.G Beam Requirements for Light-Ion-Driven Inertial-Confin	
NRL MR-4462 Bleach, R.D. et al. X-Ray Diagnostic for Light-Ion Current Measurements	1981
NRL MR-4726 Young, F.C. et al. Production of Intense Light Ion Beams from a Superport	1/1982 wer Generator
Ottinger, P.F. Mosher, D. Ottinger, Stability Considerations for Light-Ion Beam Transport is	
Blaugrund, A.E. Stephanaki A Time Resolved Beam Profile Monitor for Intense Ion I	s, S.J Goldstein, S.A. no date Beams
Mosher, D. Light-Ion-Beam Transport for Inertial Confinement Fusi	on 4/1981

			4
	Ion Beam Handling in Ma	Goldstein, S.A. et al. agnetized Plasmas	7/1981
	System Requirements for	Mosher, D. et al. r Light-Ion ICF	7/1981
	Recent Progress in the N	Mosher, D. IRL Light-Ion Program	7/1981
	ICF Research Outside the Top. Conf. on High-Powe	Mosher, D. e United States Some Background Information & Highlihgts of er E & Ion Beam Res.	7/1981 the Int.
-	Light Ion Production and	Cooperstein, G. et al. Focusing with Pinch-Reflex Diodes	7/1981
	The TRITON Electron Be	Burton, J.K. eam Accelerator	no date
• :	Osaka University		
	ILE-8119P no title	Ozaki, T. et al.	9/1981
-	Relativistic-Electron-Bear	Nakai, S. Imasaki, K. Yamanaka, C. m-Induced Fusion	no date
	Physics International, Inc.		
•	Fast Marx Generator	Aslin, H.	no date
	Liquid Dielectric Pulse Li	Smith, I. ine Technology	no date
	Sandia National Laboratories		
	SAND76-0615 Sandia Technology: Parti	Mogford, J.A. Garner, W.L. editors icle Beam Fusion (various articles)	10/1976
	SAND76-5122 Vol. I&II Proc. of the Int. Topical 3-5 November 1975	Yonas, G. editor Conf. on Electron Beam Research and Technology Albuquerqu	2/1976 ue, NM,
	SAND78-0110C Deisgn of Compact Partic	Cook, D.L. Sweeney, M.A. cle-Beam-Driven Inertial-Confinement Fusion Reactors	6/1978
	SAND78-0753 Pulsed Power Technology	Prestwich, K.R. Cook, D.L. Yonas, G. y for Inertial Confinement	1978
	SAND79-0222C Critical Environmental Co	Cook, D.L. Sweeney, M.A. onsiderations for Particle-Beam-Driven ICF Reactor Materials	1/1979
-	SAND79-0600C Sandia Particle Beam Fus	Sweeney, M.A. sion Program	1979

SAND79-0734C Electron and Ion Beam T	Freeman, J.R. et al. Transport to Fusion Targets	1979
SAND79-0819C Progress Toward Fusion	Kuswa, G.W. Bieg, K.W. Burns, E.J.T. with Particle Beams	1979
SAND79-0949C Pulsed Power Systems fo	Van Devender, J. r Inertial Confinement Systems	1979
SAND79-1011 Particle Beam Fusion Pro	Sweeney, M.A. Cook, D.L. ogress Report 4/78 – 12/78	12/1979
SAND79-1411C Particle Beam Interaction	Clauser, M.J. Burns, E.J. Chang, J. Is with Plasmas and their Application to Inertial Fusion	1979
SAND79-1611 The Pellet Injection Probl	Cook, D.L. Sweeney, M.A. Iem in a Gas-Filled Particle Beam Reactor	11/1979
SAND79-1673 Production and Post-Acce	Humphries, S.Jr. et al. eleration of Intense Ion Beams in Magnetically Insulated Gaps	8/1979
SAND79-1927C Ion Beam Energy Deposit	Mehlhorn, T.A. tion Physics for ICF Targets	1980
SAND79-1942C Target Fabrication for Pa	Bieg, K.W. Chang, J. rticle Beam Fusion	1980
SAND79-1944 Pellet Injection, Protectio	Cook, D.L. n and Targeting	1979
SAND79-2133C Pulsed Power Particle Bea	Yonas, G. am Fusion Research	1979
SAND79-7044 Technical Review of the S	no author Sandia Laboratories Particle Beam Fusion Program	5/1979
SAND80-0038 Finite Material Temperati	Mehlhorn, T.A. are Model for Ion Energy Deposition in Ion-Driven ICF Targets	1 980
SAND80-0154 Laser Heating of a Molecu	Olsen, J.N. Baker, L. Jar Gas Channel	2/;980
SAND80-0367C Pulse-Power Driven Light	Kuswa, G.W. Ion Accelerators for Fusion: The Sandia Approach	1980
SAND80-0387C Light-Ion Transport in Pla	Wright, T.P. et al. sma Channels for ICF	1980
SAND80-0466C Technological Aspects of	Cook, D.L. Particle Beam Fusion	3/1980
SAND80-0974 Particle Beam Fusion Pro	Sweeney, M.A. Cook, D.L. gress Report 6/79 – 12/79	1/1981
SAND80-1355C Progress Toward Fusion v	no author vith Light Ions	1980
SAND80-2425C Light Ion Driven Inertial F	Cook, D.L. et al. Fusion Reactor Concepts	10/1980

SAND80-2436C Yonas, G. Light Ion Beams as a Potential ICF Ignition Source and Requirements for Reactor A	1980 Application
SAND80-2788C Cook, D.L. Sweeney, M.A. Heating of Cryogenic Targets in a Light-Ion Fusion Cavity	1981
SAND80-7001 Moses, G.A. Abdel-Khalik, S. Drake, D. First Wall and Cavity Design Studies for a Light Ion Beam Driven Fusion Reactor	8/1980
SAND81-0445C Quintenz, J.P. Kuswa, G.W. Light Ion Ignitors for Inertial Confinement Fusion: Progress Toward Proof-of-Princip	1981 Dle
SAND81-0672C Kuswa, G.W. Quintenz, J.P. Seidel, D.B. Scalability of Light Ion Beams to Reach Fusion Conditions	1981
SAND81-0842C Mix, L.P. et al. Low-Energy X-Ray Emission from Light Ion Targets	1981
SAND81-2009 Humphries, S.Jr. Lockner, T.R. Nor High Power Pulsed Ion Beam Acceleration and Transport	vember 1981
Humphries, S.Jr. Magnetic Field Effects in Light Ion Fusion Transport (Internal Memo)	4/1980
Olsen, J.N. Leeper, R.J. Ion Beam Transport in Laser Initiated Discharge Channels	1981
Yonas, G. Testimony on Particle Beam Fusion Research House Armed Services Committee	4/1980
Cook, D.L. Sweeney, M.A. Design of Compact Particle-Beam-Driven Inertial-Confinement Fusion Reactors	no date
Sweeney, M.A. Cook, D.L. Blast-Wave Kinetics and Thermal Transport in a Particle-Beam Reactor Chamber	11/1979
Cook, D.L. Impulse and Overpressure on PBFA-I (Memo to J.P. VanDevender)	10/1979
no author Viewgraphs relating to LIB Reactors	no date
VanDevender, J.P Drivers for Light Ion Fusion (In "Particle Beam Fusion Articles", SNL)	10/1981
Cook, D.L. et al. Light Ion Driven Inertial Fusion Reactor Concepts (In "Particle Beam Fusion Articles	10/1981 s", SNL)
Yonas, G. Light Ion Beams as a Potential ICF Ignition Source and Requirements for Reactor (In "Particle Beam Fusion Articles", SNL)	10/1980 Application
Yonas, G. Inertial Fusion Research Using Pulsed Power Drivers	9/1981
Olsen, J. Ion Beam Transport Experiments in Laser- or Wire-Triggered Discharges	no date
Johnson, D.L. Parallel Plate Transmission Line (Lecture Notes)	no date

	7
Clauser, M.J. Sweeney, M.A. Charged-Particle Beam Implosion of Fusion Targets	no date
no author Particle Beam Fusion	1/1980
Kuswa, G.W. Pulse-Power Driven Light Ion Accelerators for Fusion – The Sandia Approach	no date
Kuswa, G.W. et al. Scalability of Light Ion Beams to Reach Fusion Conditions	7/1981
Freeman, J.R. et al. Particle Beam Fusion Research	no date
Prestwich, K.R. Cook, D.L. Yonas, G. Pulsed Power Technology for Inertial Confinement	no date
Kuswa, G.W. et al. High Power Magnetically Insulated Radial Diode	no date
Prestwich, K.R. Pulse Power Technology Application to Lasers	no date
Kuswa, G.W. Inertial Confinement Fusion Energy with Particle Beams	no date
Martin, T.H. High Power Laser Accelerators	no date
Miller, P.A. et al. REB Propagation and Combination in Plasma Channels	no date
Ramirez, J.J. Prestwich, K.R. REBLE, A Radially Converging Electron Beam Accelerator	no date
Humphries, S.Jr. Intense Pulsed Linear Ion Accelerators for Inertial Fusion	no date
Mendel, C.W.Jr. Goldstein, S.A. Electron Beam Pinching from Discrete Large Diameter Cathodes	no date
Miller, P.A. et al. REB Pinching, Transport, and Combination in Plasma Channels for ICF	no date
Science Applications, Inc.	
Drobot, A.T. et al. Electromagnetic and Quasi-Static Simulations of Ion Diodes	7/1981
University of Illinois	
Johnson, G.B.	1090

Ion Bunching at High Energies

University of New Mexico

NE-74 Cooper, G.W. 10/1979 A Feasibility Study of Laser Guided Discharges Measures, R.M. Cardinal, P.G. no date Laser Ionization Based on Resonance Saturation - A Simple Model Description University of Toronto Measures, R.M. Cardinal, P.G. Schinn, G. no date A Theoretical Model of Laser Ionization of Alkali Vapours Based on Resonance Saturation University of Wisconsin UWFDM-307 Peterson, R.R. Moses, G.A. 6/1979 MFP - A Calculation of Radiation Mean Free Paths, Ionization and Internal Energies in Noble Gases UWFDM-315 Peterson, R.R. Moses, G.A. 10/1979 Blast Wave Calcualtions in Argon Cavity Gas for Light Ion Beam Fusion Reactors UWFDM-320 Moses, G.A. et al. 10/1979 First Wall and Cavity Design Studies for a Light Ion Beam Driven Fusion Reactor UWFDM-322 Engelstad, R.L. Lovell, E.G. 12/1979 First Wall Mechanical Design for Light Ion Beam Fusion Reactors UWFDM-323 Moses, G.A. Peterson, R.R. 10/1979 First Wall Protection in ICF Reactors by Inert Cavity Gases UWFDM-336 Moses, G.A. Peterson, R.R. 1/1980 FIRE - A Computer Code to Simulate Cavity Gas Response to Inertial Confinement Target Explosions **UWFDM-371** Peterson, R.R. Cooper, G.W. Moses, G.A. 8/1980

UWFDM-372 Peterson, R.R. Moses, G.A. 9/1980 MIXER - A Multi-Species Optical Data and Equation of State Computer Code

Cavity Gas Analysis for Light Ion Beam Fusion Reactors

UWFDM-382 Peterson, R.R. et al. 12/1980 TSTRESS - A Transient Stress Computer Code

UWFDM-405 McCarville, T.J. Kulcinski, G.L. Moses, G.A. 1/1981 An Analytical Model for the Motion and Radiative Response of a Low Density Inertial Confinement Fusion Buffer Gas

UWFDM-406 McCarville, T.J. Kulcinski, G.L. Moses, G.A. 1/1981 A Model for the Deposition of X-Rays and Pellet Debris from Inertial Confinement Fusion Targets into a Cavity Gas

UWFDM-407 McCarville, T.J. Peterson, R.R. Moses, G.A. 2/1982 Improvements in the FIRE Code for Simulating the Response of a Cavity Gas to ICF Target Explosions

UWFDM-414 Progress Report to Sand	Badger, B. et al. ia for Light Ion Beam Activities During 1980-1981	1/1 982
UWFDM-421 Transient Elastic Stresse	Lovell, E.G. et al. s in ICF Reactor First Wall Structural Systems	8/1981
UWFDM-423 Flrst Wall Evaporation in	Hassanein, A.M. McCarville, T.J. Kulcinski, G.L. Inertial Confinement Fusion Reactos Utilizing Gas Protection	8/1981
UWFDM-442 Low Density Cavity Gas F	Peterson, R.R. Lee, K.J. Moses, G.A. Fireball Dynamics in the Light Ion Beam Target Development I	10/1981 Facility
UWFDM-455 Fireball Propagation in Pr ment Facility	Peterson, R.R. Lee, K.J. Moses, G.A. reformed Plasma Channels in the Light Ion Beam Driven Target	1/1 982 Develop-
UWFDM-456 Choice of First Wall Mate	Peterson, R.R. et al. rial in the Light Ion Beam Target Development Facility	2/1982
UWFDM-457 Report to Sandia Laborate the LIB TDF from Aug. 1	Badger, B. et al. ory on University Wisconsin Fusion Engr. Program Design Acti 981 – Feb. 1982	2/19 82 vities for
UWFDM-458 Documentaiton for MF-FI	Moses, G.A. McCarville, T.J. Peterson, R.R. RE, A Multifrequency Radiative Transfer Version of FIRE	1982

.

Other Reports

Bergeron, K.D.

Theory of the Secondary Electron Avalanche at Electrically Stressed Insulator-Vacuum Interfac(SAN) [Reprint: J. Appl. Phys. 48, pp. 3073-3080 7/1977]

Bergeron, K.D. Poukey, J.W.

Relativistic Space-Charge Flow in a Magnetic Field (SAN) [Reprint: Appl. Phys. Lett. 27, pp. 58-60 7/1975]

Bergeron, K.D.

One- and Two-Species Equilibria for Magnetic Insulation in Coaxial Geometry (SAN) [Reprint: Phys. Fluids 20, pp. 688-697 4/1977]

Bergeron, K.D.

Equivalent Circuit Approach to Long Magnetically Insulated Transmission Lines (SAN) [Reprint: J. Appl. Phys. 48, pp. 3065-3069 1977]

Blaugrund, A.E. Cooperstein, G. Goldstein, S.

Relativisitic (sic) Electron Beam Pinch Formation Processes in Low Impedance Diodes (NAV)(UMD) [Reprint: Phys. Fluids 20, pp. 1185-1194 7/1977]

Blaugrund, A.E. Cooperstein, G.

Intense Focusing of Relativistic Electrons by Collapsing Hollow Beams (NAV) [Reprint: Phys. Rev. Lett. 34, pp. 461-464 2/1975]

Booth, L.A.

Considerations for Inertial Confinement Fusion Reactor Design [Atomkernerergie/Kerntechnik 36, pp. 211-212 1980]

Briggs, R.J. et al.

Transport and Self-Focused Relativistic Electron Beams [From: 2nd Int. Top. Conf. High Power Electron and Ion Beam Research, 1977]

Buchanan, H.L. et al.

Transport of Intense Particle Beams with Application to Heavy Ion Fusion [From: Proc. 3rd Int. Top. Conf. on High Power E. 1979]

Colombant, D.G. Goldstein, S.A. Mosher, D.

Hydrodynamic Response of Plasma Channels to Propagating Ion Beams (NAV) [Reprint: Phys. Rev. Lett. 45, pp. 1253-1256 10/1980]

Cook, D.L. Sweeney, M.A.

Critical Environmental Considerations for Particle-Beam-Driven ICF Reactor Materials (SAN) [Reprint: J. Nucl. Matls. 85&86, pp. 127-131 1979]

Cook, D.L.

Technological Aspects of Particle Beam Fusion [20th Annual ASME Symp., pp. 37-46 1980]

Destler, W.W. et al.

Collective Acceleration of Light and Heavy Ions (UMD) [Reprint: IEEE Trans. Nucl. Sci. NS-28 1981]

Didenko, A.N. et al.

Generation of High Power Ion Beams in Ballistic Focusing Diodes (TOM) [Reprint: IEEE Trans. Nucl. Sci. NS-28, p. 3436 1981]

Frazier, G. et al.

no title [From 3rd IEEE Int. Pulsed Power Conf. 6/1981]

Freeman, J.R. Baker, L. Cook, D.L.

no title [From: 4th Conf. on High Power E. & Ion Beam Res. 6/1981]

Freiwald, D.A. Axford, R.A.

Approximate Spherical Blast Theory Including Source Mass (LOS) [Reprint: J. Appl. Phys. 46, pp. 1171-1174 3/1975]

Goldstein, S.A. Lee, R.

Ion-Induced Pinch and the Enhancement of Ion Current by Pinched Electron Flow in Relativistic Diodes (UMD)(NAV) [Reprint: Phys. Rev. Lett. 35, pp. 1079-1082 10/1975]

Goldstein, S.A. et al.

Focusing of Intense Ion Beams from Pinched-Beam Diodes (NAV) [Reprint: Phys. Rev. Lett. 40, pp. 1504-1507 6/1978]

Grieg, J.R. et al.

Electrical Discharges Guided by Pulsed CO2-Laser Radiation (NAV) [Reprint: Phys. Rev. Lett. 41, pp. 174-177 7/1978]

Guragossian, Z.G et al.

Method of Active Charge and Current Neutralization of Intense Ion Beamsfor ICF (TRW) [Reprint: IEEE Trans. Nucl. Sci. NS-28, p. 3398 1981]

Halbleib, J.A. et al.

Overlap of Intense Charged Particle Beams for Inertial Confinement Fusion [Nature (London) 286, pp. 366-368 1980]

Hovingh, J. et al.

Fluid Mechanics Considerations for Liquid Wall Inertially Confined Fusion Reactors (LAL) [From: 8th Symp. on Engr. Prob. Fus. Res. 11/1979]

Humphries, S. Jr

Intense Pulsed Ion Beams for Fusion Applications (SAN) [Reprint: Nucl. Fus. 20, pp. 1549-1612 1980]

Humphries, S. Jr

Options for Light-Ion Fusion [Comm. Plasma Phys. Contrl. Fusion 6, pp. 45-52 1980]

Humphries, S.Jr.

Options for Light-Ion Fusion (SAN) [Reprint: Comm. Plasma Phys. Cont. Fusion 6, pp. 45-52 1980]

Humphries, S.Jr. et al.

One-Dimensional Ion-Beam Neutralization by Cold Electrons (SAN) [Reprint: Phys. Rev. Lett.

46, pp. 995-998 4/1981]

Humphries, S.Jr.

Intense Ion-Beam Neutralization in Free Space (SAN) [Reprint: Appl. Phys. Lett. 32, pp. 792-794 6/1978]

Humphries, S.Jr. et al.

Pulselac Program: Space Charge Neutralized Ion Beams for Inertial Fusion Applications (SAN) [Reprint: Nucl. Inst. Meth. 187, pp. 289-294 1981]

Humphries, S.Jr.

no title [Reprint: J. Appl. Phys. 51, p. 1876 1980]

Humphries, S.Jr.

Intense Pulsed Ion Beams for Fusion Applications [Nucl. Fusion 20, pp. 1549-1612 1980]

Humphries, S.Jr. Poukey, J.W.

Proposed Method for the Transport of Ions in Linear Accelerators Utilizing Electron Neutralization (SAN) [Reprint: Particle Accelerators 10, pp. 71-87 1979]

Humphries, S.Jr.

Longitudinal Instabilities of Pulseline Driven Neutralized Linear Ion Accelerators(SAN) [Reprint: J. Appl. Phys. 51, pp. 2338-2347 5/1980]

Humphries, S.Jr.

Velocity Lens Model for Longitudinal Beam Dynamics in Inductive Linear Ion Accelrators (SAN) [Reprint: J. Appl. Phys. 53, pp. 1334-1341 3/1982]

Humphries, S.Jr. Lockner, T.R. Freeman, J.R.

High Intensity Ion Accelerators for Inertial Fusion (SAN) [Reprint: IEEE Trans. on Nucl. Sci., NS-28, pp. 2410-3416/1981]

Humphries, S.Jr. et al.

Production and Postacceleration of Intense Ion Beams in Magnetically Insulated Gaps [J. Appl. Phys. 51, pp. 1876-1895 1980]

Imasaki, K. et al.

Implosion Efficiency of Light Ion Beam Driven Target (OSA) [Reprint: J. Phys. Soc. Japan 50, pp. 1819-1820 6/1981]

Imasaki, K. et al.

no title [From: 4th Conf. on High Power Electron adn Ion Beam Research, 6/1981]

Iners, J.D. Nation, J.A. Roth, I.

Proton Induction in an Induction Linac (COR) [Reprint: IEEE Trans. Nucl. Sci. NS-28, 3380 1981]

Johnson, D.J. et al.

Time-Dependent Impedance Behavior of Low-Impedance REB Diodes During Self-Pinching (NAV) [Reprint: J. Appl. Phys. 49, pp. 4634-4643 9/1978]

Johnson, D.J. et al.

Production of 0.5-TW Proton Pulses with a Spherical Focusing, Magnetically Insulated Diode(SAN) [Reprint: Phys. Rev. Lett. 42, pp. 610-613 2/1979]

Johnson, D.J. et al.

Dual-Current Feed Magnetically Insulated Light-Ion Diode [J. Appl. Phys. 50, pp. 4524-4531 1979]

Jorna, S. Metzler, N. Hammerling, P. Dependence of Target Yield on Input Energy Profile [Phys. Lett. A 80, pp. 380-382 1980]

Kramer, J.M. Meek, C.C. Predebon, W.W.

A Generalized Analysis of Thermal and Mechanical Loads in Inertial Confinement Reactors (ARG)(MIC) [Reprint: J. Thermal Stresses 3, pp. 537-549 1980]

Lee, E.P. Cooper, R.K.

General Envelope Equation for Cylindrically Symmetric Charged-Particle Beams [Reprint: Particle Accelerators 7, p. 83 1976]

Lerner, E.J.

Electromagnetic Pulses: Potential Crippler [Reprint: IEEE Spectrum, pp. 41-49 5/1981]

Lockner, T.R. Humphries, S.Jr. Ramirez, J.J.

Experiments on the Acceleration and Transport of Multi-Kiloampere Ion Beams (SAN) [Reprint: IEEE Tras. Nucl. Sci. 28, pp. 3407-3409 6/1981]

Lockner, T.R. Humphries, S. Ramires, J.J.

no title [Reprint: IEEE Trans. Nucl. Sci. NS-28, p. 3407 1981]

Maenchen, J. et al.

Magnetic Focusing of Intense Ion Beams (COR) [Reprint: Phys. Fluids 22, p. 555-565 1979]

Martin, T.H. et al.

Particle Beam Fusion Accelerator–I (PBFA-I) (SAN) [Reprint: IEEE Trans. Nucl. Sci. NS-28, p. 3365 1981]

Measures, R.M. Drewell, N. Cardinal, P. Superelastic Laser Energy Conversion [From: Radiation Energy Conv. in Space Conf. 1978]

Measures, R.M. Drewell, N. Cardinal, P.

Electron- and Ion-Beam Transportation Channel Formation by Laser Ionization Based on Resonance Saturation-Libors [Reprint: J. Appl. Phys. 50 1979]

Mendel, C.W.

no title (paper 4C3-4) [From: IEEE Int. Conf. Plasma Science 1980]

Mendel, C.W. Jr. Goldstein, S.A.

A Fast-Opening Switch for Use in REB Diode Experiments (SAN) [Reprint: J. Appl. Phys. 48, ' pp. 1004-1006 3/1977]

Miller, P.A. et al.

Propagation of Pinched Electron Beams for Pellet Fusion (SAN) [Reprint: Phys. Rev. Lett. 39, pp. 92-95 7/1977]

Miller, P.A. Gerardo, J.B.

Relativistic Electron Beam Propagation in High-Pressure Gases (SAN) [Reprint: J. Appl. Phys. 43, pp. 3008-3013 7/1972]

n'

Miller, P.A. et al.

Light Ion and Electron Beams for Inertial Fusion (SAN) [Reprint: Comments Plasma Phys. 5, pp. 95-104 1979]

Moses, G.A. Spencer, R.

Compact-Electron-Beam or Light-Ion-Beam Fusion Reactor Cavity Design Using Non-Spherical Blast Waves [Nucl. Fusion 19, pp. 1386-1388 1979]

Moses, G.A. Peterson, R.R.

First-Wall Protection in Particle-Beam Fusion Reactors by Inert Cavity Gases [Nucl. Fusion 20, pp. 849-857 1980]

Mosher, D. Bernstein, I.B.

Magnetic-Field–Induced Enhancement of Relativistic-Electron-Beam Energy Deposition (NAV) [Reprint: Phys. Rev. Lett. 38, pp. 1483-1486 6/1977]

Mosher, D.

Interactions of Relativistic Electron Beams with High Atomic-Number Plasmas (NAV) [Reprint: Phys. Fluids 18, pp. 846-857 7/1975]

Mosher, D. et al.

no title [From: Conf. on High-Power E. and Ion-Beam Res. 6/1981]

Olsen, J.N. Baker, L.

Laser-Initiated Channels for Ion Transport: Breakdown and Channel Evolution (SAN) [Reprint: J. Appl. Phys. 52, pp. 3286-3292 6/1981]

Olsen, J.N.

Laser-Initiated Channels for Ion Transport: CO2-Laser Absorption and Heating of NH3 and C2H4 Gases (SAN) [Reprint: J. Appl. Phys. 52, pp. 3279-3285 5/1981]

Olsen, J.N. Johnson, D.J. Leeper, R.J.

Propagation of Light lons in a Plasma Channel [Appl. Phys. Lett. 36, pp. 808-810 1980]

Olsen, J.N.

Laser-Initiated Channels for Ion Transport: CO2-Laser Absorption and Heating of NH3 and C2H4 Gases [J. Appl. Phys. 52, pp. 3279-3285 1981]

Olson, C.L.

Pulsed Power Ion Accelerators for Inertially Confined Fusion [Fiz. Plazmy 3, pp. 465-486 1977]

Ottinger, P.F. Mosher, D. Goldstein, S.A.

Electromagnetic Instabilities in a Focused Ion Beam Propagating Through a Z-Discharge Plasma (NAV)(JAY) [Reprint: Phys. Fluids 24, pp. 164-170 1/1981]

Ottinger, P.F. Mosher, D. Goldstein, S.A.

Microstability of a Focused lon Beam Propagating Through a Z-Pinch Plasma (NAV)(SCI) [Reprint: Phys. Fluids 22, pp. 332-337 2/1979]

Ottinger, P.F. Mosher, D. Goldstein, S.A.

Propagation of Intense Ion Beams in Straight and Tapered Z-Discharge Plasma Channels (NAV) [Reprint: Phys. Fluids 23, pp. 909-920 5/1980] Ottinger, P.F. Mosher, D. Goldstein, S.A.

Electromagnetic Instabilities in a Focused Ion Beam Propagating Through a Z-Discharge Plasma [Phys. Fluids 24, pp. 164-170 1981]

Pasour, J.A. et al.

Reflex Tetrode with Unidirectional Ion Flow (NAV) [Reprint: Phys. Rev. Lett. 40, pp. 448-451 2/1978]

Phelps, D.A. Salisbury, W.W. Jorna, S.

Injector Based on Electric Insulation for the Controlled Ballistic Focusing of Light Ion Beams [J. Appl. Phys. 52, pp. 3761-3768 1981]

Phelps, D.A. Chang, D.B.

Stability of Bounded Electron Beams Neutralized by Co-Moving Electrons (OCC) [Reprint: IEEE Trans. Nucl. Sci. NS-28, p. 3427 1981]

Phelps, D.A. Somerstein, S.

Precision Intense Particle Beam Accelerators Using In-Situ Tuning Techniques (OCC) [Reprint: IEEE Trans. Nucl. Sci. NS-28, p. 3424 1981]

Poukey, J.W.

Two-Dimensional Ion Effects in Relativistic Diodes (SAN) [Reprint: J. Vac. Sci. Technol. 12, pp. 1214-1217 12/1975]

Poukey, J.W.

Ion Effects in Relativistic Diodes (SAN) [Reprint: Appl. Phys. Lett. 26, pp.145-146 1975]

Poukey, J.W. et al.

Focused Intense Ion Beams Using Self-Pinched Relativistic Electron Beams (SAN) [Reprint: Phys. Rev. Lett. 35, pp.1806-1808 1975]

Prestwich, K.R.

HARP, A Short Pulse, High Current Electron Beam Acclerator (SAN) [Reprint: IEEE Trans. on Nucl. Sci. NS-22, 975-978, 1975]

Quintenz, J.P. Poukey, J.W.

Ion Current Reduction in Pinched Electron Beam Diodes (SAN) [Reprint: J. Appl. Phys. 48, pp. 2287-2293 1977]

Ranger, A.A.

Shock Wave Propagation Through a Two-Phase Medium [Reprint: Astonautica Acta 17, pp. 675-83 1972]

Ryutov, D.D.

High-Current Electron and Ion Beam Research and Technology. Report on the 3rd Int. Top. Conf., Novosibirsk, USSR, 3-6 July 1979 [Nucl. Fusion 19, pp. 1685-1688 1979]

Sandel, F.L. et al.

no title [From: 4th Conf. on High Power Electron and Ion Beam Research, 6/1981]

Slutz, S.A. Mehlhorn, T.A.

no title [Reprint: Appl. Phys. Lett. 39 12/1981]

Stephanakis, S.J et al.

no title [Reprint: Bull. Am. Phys. Soc. 26, p. 921 9/1981]

Stephanakis, S.J et al.

Production of Intense Proton Beams in Pinched-Electron-Beam Diodes (NAV) [Reprint: Phys. Rev. Lett. 37, pp. 1543-1546 12/1976]

Stringfield, R. et al.

no title [J. of Vac. Tech. 18, p. 146 1980]

Swain, D.W. et al.

Measurements of Large Ion Currents in a Pinched Relativistic Electron Diode (SAN) [Reprint: J. Appl. Phys. 48, pp. 118-124 1977]

Swain, D.W. et al.

The Characteristics of a Medium Current Relativistic Electron-Beam Diode (SAN) [Reprint: J. Appl. Phys. 48, pp. 1085-1093 3/1977]

Sweeney, M.A. Farnsworth, A.V.

High-Gain, Low-Intensity ICF Targets for a Charged-Particle Beam Fusion Driver [Nucl. Fusion 21, pp. 41-54 1981]

Sweeney, M.A. Widner, M.M.

Thick-Shell Shock-Focusing Electron Beam Targets (SAN) [Reprint: Nucl. Fus. 13, pp. 429-433 1978]

Thayer, W.J. et al.

Pressure Wave Suppression for a Pulsed Chemical Laser [Reprint: AIAA Journal 18, pp. 657-64 6/1980]

Thomson, S.L.

Hydrodynamic Effects in Inertial Fusion Reactors (BEC) [Reprint: 5th SMIRT Conf., Berlin 8/1979]

VanDevender, J.P

Long Self-Magnetically Insulated Power Transport Experiment(SAN) [J. Appl. Phys. 50, p. 3928 1979]

Varnado, S.G. Carlson, G.A.

Considerations in the Design of Electron-Beam-Induced Fusion Reactor Systems (SAN) [Reprint: Nucl. Tech. 29, pp. 415-427 6/1976]

Wright, T.P. Green, T.A. Mehlhorn, T.A.

Charge Exhange and Energy Loss of Carbon lons in Air-Plasma Channels [J. Appl. Phys. 52, pp. 147-150 1981]

Wright, T.P.

Multi-Channel Ion Beam Overlap (SAN) [Reprint: Phys. Fluids 24, p. 370-372 2/1981]

Wright, T.P. Halbleib, J.A.Sr

Theoretical Multiple Beam Overlap from Channel Transport of Intense Particle Beams (SAN) [Reprint: Phys. Fluids 23, p. 1603-1619 8/1980]

Yonas, G.

Developments in Sandia Laboratories Particle Beam Fusion Programme [Plasma Phys. Control. Nucl. Fus. Res., IAEA 1979]

Yonas, G.

Intense Particle Beams [IEEE Trans. Nucl. Sci. NS-26, pp. 4160-4165 1979]

Yonas, G. et al.

Electron Beam Focusing and Application to Pulsed Fusion [Reprint: Nuclear Fusion 14, pp. 731-740 1974]

Yonas, G. et al.

Electron Beam Focusing Using Current-Carrying Plasmas in High – gamma over nu -Diodes (SAN) [Reprint: Phys. Rev. Lett. 30, pp.164-167 1973]

Yonas, G.

Fusion Power with Particle Beams (SAN) [Reprint: Scientific American 239 pp. 50-61 1978]

Yu, S. Lee, E.P. Buchanan, H.L.

Focal Spot Size Predictions for Beam Transport through a Gas-Filled Reactor [From: Proc. of the Heavy Ion Workshop, p. 504 1979]

Yu, S. et al.

Beam Propagation through a Gaseous Reactor - Classical Transport [From: Proc. of Heavy Ion Fusion Workshop 1978]

Yu, S. et al.

Propagation of a Heavy Ion Beam in a Gas-Filled Reactor [From: Proc. of Heavy Ion Fusion Workshop 1977]

et al.

Production and Postacceleration of Intense Ions Beams in Magnetically Insulated Gaps (SAN) [Reprint: J. Appl. Phys. 51, pp. 1876-1895 4/1980]

no author

Proc. of the 4th Int. Topical Conf. on High-Power Electron and Ion-Beam Research and Technology, Palaiseau, France [Conference Proceedings 6/1981]