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Abstract

When engineers and designers of fusion research and power reactors require infor-
mation related to the induced radioactivity in the first wall, blanket and shield, they
turn to one of many codes to generate a solution. Unfortunately, these codes all make
physical and mathematical approximations in order to turn a functionally infinite and
highly complicated problem into a more manageable, simple problem. This paper ex-
amines these approximations, namely, the handling of loops in the decay scheme, the
truncation of the decay scheme, and the modeling of pulsed/intermittent operation his-
tories, as physical approximations and the choice of a solution method as a mathematical
approximation. The final recommendation is a code that uses an exact representation
of the pulsing history, handles loops by unraveling, truncates the decay schemes with a
relative sub-tree production rule modified by a stable truncation restriction and uses an
adaptively chosen analytical or Laplace inverse mathematical solution method.



1.2 The Mathematical Representation

This problem is governed by very simple, linear, first order, ordinary differential equations. In its
most simple mathematical representation, the time rate of change of density of an isotope is the
destruction rate of the isotope subtracted from a sum of production rates from all parents. If we
combine the equations for all the isotopes of interest, we get a set of coupled equations which, when
written in vector and matrix notation, are of the form:

N(t) = AN () + (1)

where the matrix elements a;;,¢ # j, are the production rates of isotope ¢ from isotope j, the
elements a;; are the destruction rates of element 7, and the vector S is an arbitrary source term.

1.3 The Solution

Analogous to the scalar equation, the formal solution has the matrix exponential form,
— — t -
N()= eAtNO + eAt/ e—At'S(t’)dt',
0

the calculation of which is a more daunting task than might be expected. Based on the physical
representation of the system, this matrix A can range in complexity from a simple lower-triangular,
diagonalizable matrix to an arbitrarily filled defective matrix. In general, increased complexity of
matrix A represents improved physical modeling but requires more mathematical and/or computa-
tional approximation. The challenge is to use a physical representation which does not jeopardize
the accuracy and allows a relatively simple mathematical solution method. Solutions to variations
of this problem have been in existence for over 80 years, beginning with the analytical Bateman[1]
equations for simple linear chains through to the modern computational methods for more compli-
cated transmutation/decay schemes.

Due to the simplicity of the equations, a variety of independently developed codes exist[2]{3][4][5]
[6][7] (to name a few), all using different physical and mathematical approximations which will be
addressed and assessed here with the hope of providing suggestions of an optimum set of approxi-
mations.

2 Physical Approximations

The reason for most physical approximations is to preserve the tractability of the problem. As data
libraries have become more comprehensive, including more isotopes and neutron reaction types,
the possible size of the physical problem becomes unmanageable. Without these approximations,
the problem would become simply too large or too mathematically complex, due to complicated
matrices, both resulting in slow codes. There are three main sources of physical approximation:
transmutation/decay loops, decay chain or scheme truncation, and pulsed/intermittent operation.
Other sources of approximation exist, such as inaccuracies in nuclear data libraries, but are not
within the scope of this analysis.



2.1 Loop Handling

During periods of irradiation, there is the potential for loops to occur. These loops are not
possible in pure decay periods for the simple reason that since radioactive decay is a transition to a
more stable state, it cannot be reversed without an energy source. With a neutron bombardment
as an energy source, however, it is possible to create loops in the decay scheme. One such example
is:

AR g B 4

by which an isotope, A, is transmuted by a neutron with the release of a proton to an isotope, B,
which decays by 8~ emission back to A. There are other loops with different reactions and different
lengths, that is, involving more than just two isotopes.

History

Currently, some codes model the transmuta- |
tion/decay scheme (sample in Figure 1) with lin- v ! I
ear chains (see Figure 2), handling loops by simply C B l_—%;_l_
truncating the chains at the onset of a loop, guar- $_I_$ [ $ |
anteeing lower triangular matrices A in the rate F E
equations[3][4]. Another way is to model all the }
isotopes produced by a single input isotope in a L
tree structure, with each “branch” in the tree rep-
resenting a transmutation or decay path. There
are two methods by which to handle loops when
using the decay scheme model. One is to include
the loops explicitly by modifying the rate equation of the first isotope in the loop to include pro-
duction from its own child, guaranteeing that A will be non-lower triangular[6][7] (see Figure 1).
Alternatively, the loops can be “straightened”, or unravelled, where the production of the parent
from the child is treated as the production of a pseudo-unique isotope and the different occurrences
of the same isotope (see Figure 3) are combined after computation, resulting in a defective lower-
triangular matrix A, for which there exist efficient and accurate solution methods[2]. Finally, these
trees with straightened loops can be separated into linear chains and solved one chain at a time,
using a series of matrices, A, all of which are bi-diagonal[8].

Related to loop handling is the issue of an iso-
tope which may have two independent production
paths. The different schemes will treat them all in
different ways, but none should affect the level of
accuracy.

There is much debate as to whether or not the
contributions from loops are significant. In general
the production of a grandchild (which is the closest
relationship that an isotope may have to itself) is
very small and due to the less likely neutron re-
actions which must take place for loops to occur,
the contributions to the final result are thought, by
some, to be negligible. In most cases this is a valid
engineering approximation which can greatly lower the complexity of the problem and allow for

Figure 1. Sample reaction tree (explicit loop
representation).
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Figure 2: Linear chain representation.



very rapid solution methods, and thus, should not be dismissed. Mathematical purists feel that the
contributions could be important in some low tolerance safety calculations and that they should
always be handled with some accuracy, rather than discarded entirely. In addition, new methods
are being developed to allow for the fast and efficient solution of systems that do handle loops.

Important Considerations and Discussion

The decision whether or not to handle loops is dependent on the nature of the problem. For rapid
and numerous engineering calculations, the lack of loops is likely to play a small, if not negligible,
role. On the other hand, for some studies that require precise calculation of certain isotopes to
very small concentrations, the choice of how to handle loops may have important consequences on
the final results. By not including the feedback from the loop, there is the risk that a significant
contribution might be missed. On the other hand, this choice is often dictated by (or, in turn,
dictates) the mathematical methods that can be used for the solution. This is significant if a
method that accommodates loops introduces more mathematical error than is gained by increased
accuracy.

In those codes that use linear chains for their
physical model, it is common to truncate at the on-
set of a loop[3][4]. Without loops, as in the case of
pure decay, the analytical Bateman equations can

I easily be implemented. When these linear chains

FL'——; are formed with straightened loops, accurate meth-

¢ {——’i—l K ods have recently been developed to solve these sys-
I tems[8]. Furthermore, when using linear chains, there

;_‘—& is the possibility to treat each chain uniquely, deter-
mining whether or not it contains a loop, and if not,

resorting to the highly accurate and efficient Bate-
Figure 3. Straightened loops representation. .5 equations.
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In those codes that use decay schemes, the two
methods of explicit loop handling and loop straightening are used. The first method will give the
most accurate results, since it is guaranteed to include all contributions of feedback from the child
to the parent back to the child, and so on[6][7]. However, the need for non-lower triangular matrices
results in solution methods that may be more mathematically approximate and/or subject to higher
computational error. When straightening loops, the pseudo-unique isotopes are treated with the
same truncation rules as the rest of the decay scheme, thus maintaining the same accuracy through-
out the decay scheme[2], even though the accuracy of the loop solution is reduced. Since a limit has
already been determined for the rest of the calculation, the penalty for choosing straightened loops
is negligible while the benefit derived from the use of defective lower-triangular matrices allowing
for more simple mathematical methods is significant. The inclusion of 2 or 3 iterations/corrections
of the loop by straightening tend to introduce an error relative to the exact solution of less than
10~° compared to an error as high as 0.2% when loops are ignored completely[8]. In addition, by
straightening loops, as mentioned above, the tree can be separated into linear chains and solved
using highly accurate methods.



2.2 Truncation

During periods of irradiation, every isotope, in theory, has some finite probability of transmuting
to some other element. Thus, as we follow the decay schemes, they will continue indefinitely to
include most isotopes known to exist. Clearly, this problem is far too large to be managed by any
code and some way to limit its size must be chosen. Normally, a set of rules are devised to truncate
the system while maintaining the accuracy of the physical model.

History

A variety of methods have been used, historically, to effect this truncation of the data schemes.
Some codes may simply limit the decay scheme to a certain number of generations relative to the
initial input nuclides. While this approach can be very revealing for certain studies, most codes use
more complex sets of rules. Since radioactivity is the most important result, this simple rule can
be improved by counting only stable isotopes as the generations and only truncating with a stable
isotope. Another variant counts only transmutation reactions as generations[6][7]. Yet another
alternative is to calculate the production of a child isotope from the initial isotope and compare
that to a threshold value. Only an estimate is available[2] unless fast enough mathematical methods
are developed to allow solving the entire problem. A modification of this is to calculate the relative
production of the entire subtree below a particular child by preventing the transmutation/decay of
the child during the reference calculation. A final modification is to perform this calculation and,
if below the threshold criterion, truncate any subsequent transmutation branches while keeping
subsequent decay branches[3][4]. Currently, these sets of rules, and variations, are used by the
leading activation codes. While these rules appear simple and straightforward, their implications
can be significant.

Important Considerations and Discussion

There are two main considerations when choosing a set of truncation rules. Primarily, it is
important not to reduce the calculated radioactivity by not including enough isotopes in the decay
scheme. If a scheme is truncated too early, many radioactive isotopes that may be created in the
real system might be ignored, drastically affecting the accuracy of the calculation. Related to this
issue is the conservation of atoms in the model. In a real system, there will always be at least
as many atoms as there were of the initial isotope, with additional atoms coming from neutron
interactions that produce light ions (say tritium (n,t) or helium (n,a)). However, because the
model decay scheme is truncated, there is the possibility that atoms can transmute or decay out of
the model system, thus “losing” atoms from the model.

The simplest rule is deficient in many areas. Mainly, by truncating with a maximum rank, it is
possible to cut off a branch or sub-scheme that would have arbitrarily high production rates. By
paying no attention to the production rate as a criterion, important information is bound to be lost
while unimportant information will be kept. If we consider the variations based on counting stable
isotopes or transmutation reactions[6][7], we will fall into the same problem that information that
is not of interest may be retained at the expense of much more valuable results.

As suggested above, the best rule to start with is one that is able to predictively estimate
the production of an isotope from an initial isotope[2][3][4]. This can be done by simplifying the
decay scheme between the initial isotope and the isotope of interest to a linear chain and using
an analytical solution to estimate the production using a reference flux and period. With the
development of new mathematical methods for solving linear chains with straightened loops, this



calculation is possible for all chains as they are being created[8]. Even better is to calculate this
relative production exactly for a reference flux and the exact problem history. While this may take
longer than the other methods, it produces more accurate results.

After all this, however, the problem of conservation of atoms in the model has not been ad-
dressed. If the relative production of an isotope is low enough that the scheme is truncated imme-
diately following that isotope, atoms will transmute or decay out of the model from that isotope
throughout the operation and, if it is radioactive, throughout the shutdown history. This effect can
manifest itself in two significant ways. First, during operation, if an isotope’s concentration peaks
early in the history, a reference calculation of its concentration may reveal an amount less than the
tolerance and it will be truncated. However, such a result may indicate that significant quantities
of material have decayed/transmuted “through” this isotope and out of the model. Second, after
shutdown, if the reference calculation is only carried out for the operation period and the chain is
truncated on a radioactive isotope, it may decay significantly out of the model. This issue does
not affect the accuracy of results for included isotopes as much as it may result in grossly under-
calculated activity or toxicity of the system if the excluded isotopes are radioactive or toxic. It
results not just in lost accuracy, but completely missing information. These “lost” products could
be important isotopes radiologically or toxicologically, leaving the safety analysis incomplete, or
important for material composition, leaving an analysis of the material response with uncertainties.

The effect during operation can easily be eliminated. During the reference calculation, if the
bottom isotope in the chain is prohibited from decaying/transmuting the result is no longer the
concentration of that isotope, but the sum concentration of all isotopes in a sub-tree below this
isotope, i.e., the total amount of material that was converted to this isotope, regardless of whether
or not it has been converted again to something else.

After shutdown, the only way that atoms can be converted out of the model is by decay. Thus
a simple way to prevent this is to disallow truncation with a radioactive isotope. This restriction
would also allow the truncation of the transmutation branches of radioactive isotopes once below the
tolerance because it is impossible for these pathways to be followed during decay periods. Another
approach would be to use a reference irradiation period for the relative production calculation that
includes the after-shutdown time. This allows for a determination of the number of atoms which
will be converted out of the model throughout the problem, giving rise to three rules:

1. i the relative production of a sub-tree is greater than the specified threshold at shutdown,
do not truncate.

2. If the relative production of a sub-tree is less than the specified threshold at shutdown, but
greater at some after-shutdown time,

(a) if is is stable, truncate completely.

(b) if is is radioactive, truncate only subsequent transmutation branches.

3. Tf the relative production of a sub-tree is less than the specified threshold at shutdown and
at all after-shutdown times, truncate completely.

These rules can be summarized in Table 1 where ‘C’ indicates to continue the chain without trun-
cation, ‘T’ indicates to truncate the chain completely, and ‘T*’ indicates to truncate all subsequent
transmutation branches.

As a final measure to increase the accuracy of the solution the engineer or scientist using the code
could simply lower the tolerance. This does, however, introduce the danger of solving a problem



Relative Production at Shutdown

> tolerance < tolerance
Relative tol Stable: C Stable: T
Production > lolerance Radioactive: Radioactive: T™

After Stable: Stable:

< tolerance T Radioactive:

Shutdown Radioactive: T

Table 1. Outcome Chart for Truncation Rules

which in most cases is far too large and too accurate for the sake of achieving a high accuracy in
one part of the problem. It is important to note that cases may arise where an engineer might be
interested in the production of a particular isotope in very small quantities, much less than the
production of other isotopes in the system. In such a case, it may be more fruitful to implement
a code that operates in reverse, performing an “adjoint” calculation, starting with the isotope in
question and finding all the sources of that isotope[9].

2.3 Pulsed/Intermittent Operation

Current and future research fusion reactors are not designed to operate continuously; inertial con-
finement systems are intrinsically pulsed, and physics considerations are suggesting that magnet-
ically confined power reactors may have to operate on some sort of pulsing scheme (see Figure
4). The physical model used to represent this pulsed/intermittent operation has important im-
plications both in the final result and the mathematical method used to solve the equations. In
addition, many research and power reactors would have pulsing schemes that would change with
time, periodically or otherwise, representing shutdown periods for weekends or maintenance.

History

There is a rich history of models used for this aspect of the problem, originating from the
study of activation in inertial confinement fusion, pulsed fission reactor, or accelerator systems.
The simplest of these models just approximates the pulsed history with a single steady state flux

e kg

Figure 4. Sample pulsed irradiation history.
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Figure 6. Second steady state approximation.

period by one of two primary methods[5][(6]. First (see Figure 5), by conservation of fluence and
total operation time, a steady state flux equal in magnitude to the pulse flux would operate for a
time equal to the total time the reactor would be operating at power. Otherwise (see Figure 6),
by conservation of fluence and total reactor lifetime, a steady state flux lower than the pulse flux
would operate for a time equal to the total lifetime of the reactor.

A more sophisticated approximation (see Figure 7) assumes that the material is only subjected
to one pulse and removed from the reactor and allowed to decay until the shutdown time, this being
repeated for each pulse[3][10][11]. Another method is to use the appropriate steady state model for
all but the last few pulses and then use an exact pulsing history for those last pulses (see Figure
8). Finally, a number of codes will perform complete solutions using the exact irradiation history
for the entire problem|[2]{4][7].

Important Considerations and Discussion

Physically, the pulsed nature results in a buildup of transmutation products during the operation
pulses and decay of those isotopes during the “dwell” periods between pulses. For isotopes of certain
half-lives relative to the ratio of dwell time to operation time, the pulsing representation can have
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Figure 7. Continuous removal approximation.

a profound impact on the final calculated number density. The most accurate solutions will result
from methods which allow for this transient behavior during the dwell times to correctly assess the
radioactivity.

Although one approximation is more valid than the other in certain cases, Sisolak et al.[12]
showed that both pure steady state approximations above will either overestimate or underestimate
the activity for certain medium-lived isotopes by up to 1 order of magnitude. The conserved
operation time approximation, used primarily for the analysis of magnetic confinement systems, is
reasonable for long-lived isotopes that would not decay appreciably during the dwell times in the
real system such that their final density is the result of a continuous build throughout the operation
times. Similarly, in the time scales used in magnetic fusion engineering, short-lived isotopes would
reach secular equilibrium in each pulse and decay significantly during the dwell time so that the

e 3y ——

Figure 8. Steady state/pulsed hybrid approximation.



exact result is dominated by the behavior of the last pulse. Thus, the secular equilibrium density
predicted by the single long operation would be the same as the density in the real system. On
the other hand, for medium-lived isotopes, the unmodelled incomplete buildup and decay in the
real system during the pulses and dwell times, respectively, result in significant overcalculation of
the activity. For the other steady state approximation, often used for inertial fusion engineering,
similar arguments can be used to show why it routinely underestimates the activity of short-lived
isotopes.

Because the pulse widths are so much smaller than the dwell times in inertial confinement
fusion, the continuous removal approximation can be a good one for pulsed/intermittent irradiation
histories without removal. The burnup of the initial isotope is approximated well, but the burnup
of other stable isotopes in the decay scheme, and therefore the buildup of their transmutation
products, is grossly inaccurate. Thus, for any history with long pulses and/or short dwell periods,
or with many stable isotopes early in the decay scheme, this approximation will be invalid[12][13].
This approximation is only truly valid when used to model a component that is removed after each
pulse.

Clearly, the exact model does not introduce any level of approximation whatsoever, but for some
solution methods, it makes the problem prohibitively long. For that reason, the steady-state/pulsed
hybrid method was developed. In particular, if combined with the conserved operation time steady-
state model, the transients of the last few pulses can correct much of the problems encountered as
a result of the pure steady state method.

The multi-level pulsing schemes are best represented by the exact model because the change in
time scales and patterns further invalidates the other approximations, such as reference flux and
period for truncation. One of the problems with determining a reference period is the nature of
the history. Since the reference flux is usually a constant level of the same order as the operation
flux that will be used in the calculation, it is logical to use the total operation time as the reference
period, thus simulating the more conservative of the steady state approaches above. Since this is
only used for creating the model and this steady-state approximation is conservative, it is a good
choice.

3 Mathematical Approximations

In this section, the inaccuracies due to mathematical approximations will refer to both the approx-
imations made in the development of the method and those computational errors unique to the
method. For example, while all methods will be subject to round-off errors, some algorithms will
amplify this error while others may attenuate it.

Mathematical approximations are necessary in many cases to facilitate the computational so-
lution of the system of differential equations mentioned in the introduction. Due to the simplicity
of the equations themselves, very small systems could be solved by hand without approximation.
However, the large systems preclude the manual analytical solution of the problem and, until re-
cently, exact computational solutions for the optimum physical models suggested above have not
been identified or implemented[14].

The relationship between the mathematical method and the physical model are very important.
In general, as the physical model is made more accurate, the mathematical methods become slower
and/or less accurate. First, whether or not the physical model includes loops and how those
loops are implemented is crucial to the selection of a method. If loops are implemented explicitly,
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the matrix is non-triangular, and a more complicated method must be used to solve the matrix
exponential. If loops are implemented by straightening, a simpler matrix method can be employed.
Second, the model for pulsed histories is an important factor. In this case, however, the greater
accuracy in the physical model implied by the use of the exact pulsed history need not lead to
detrimental effects on the efficiency and accuracy of the mathematical solution.

History

Currently implemented mathematical methods can be divided into three types: analytical or
expansion matrix methods, non-matrix time-step solvers, and hybrid matrix/time-step methods.

In this context, analytical is used to mean mathematically exact, closed form solutions to
the problem. In all cases, these methods are subject to computational error when implemented,
although the effect of the method on those errors will vary. The simplest analytical matrix method is
a matrix representation of the Bateman equations for linear chain based codes[3][4]. Because of the
lower-triangular nondefective nature of the matrix A, the solution can be calculated by using forms
of the standard equations derived by Bateman 80 years ago. Related to this method is eigenvector
decomposition[15], in which the matrix A is decomposed into its eigenvectors and eigenvalues, which
are then raised to the exponential, and recombined to get the solution. When the linear chains are
extended to include straightened loops, the mathematical method must also be extended. Some
such extensions derive from a Laplace transform analysis of the problem and, performing either an
exact Laplace inversion or an expansion in the Laplace transform parameter, which is then inverted,
inserting the results into a matrix[8]. It is important to note that both Laplace techniques, when
applied to chains with no loops, reduce exactly to different formulations of the Bateman solution.
Another recently implemented analytical matrix method is the generalized eigenvector expansion
method[2]. This method decomposes the matrix A into its eigenvalues and generalized eigenvectors
and recombines them after applying the exponential to form the mathematically exact solution.
The Schur decomposition[7][16] produces a triangular matrix, which can be exponentiated using
one of the above methods if necessary, and then recombines the matrices to reach a solution. The
greatest source of inaccuracy is in the algorithms which perform the decomposition.

Approximate non-matrix methods use standard ordinary differential equation [ODE] solving
packages or algorithms, break the history into time steps, and sequentially solve the problem. The
standard solvers that have been used to date include Runge-Kutta, Euler (and variations [5]) and
GEARJ[6]. The approximation in these methods is a result of the discretization of time.

Finally, approximate hybrid methods can use a matrix solution to solve a time step problem
and continue in such a fashion until reaching the end of the history. A popular example of this is an
implementation which combines a series solution to the matrix exponential with short time steps
to accelerate convergence of the series[17][18]. Another approximate hybrid method is known as
“scaling and squaring” in which the matrix exponential is scaled down by powers of two until it is
small enough to solve with a quickly converging series solution, and then the result is successively
squared until reaching the final operation time[16].

Important Considerations and Discussion

There are two primary considerations: accuracy and speed.

Being the chief topic of this paper, accuracy deserves special mention here because even math-
ematically exact methods can be subject to gross errors as a result of various methods of imple-
mentation. The basis of inaccuracy is that the matrix A is ill-conditioned and/or defective.

The system is very stiff having time constants ranging from ms or less to 10!° y and is therefore
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ill-conditioned. This causes large round-off errors in some analytical methods and the smallest
time constant forces the ODE solvers to use short time steps on long histories. The Bateman
equations, for example can be implemented as a sum of single exponentials or a sum of differences
of exponentials[3][4]. The latter is superior because it can be modified to reduce round-off error in
cases when the destruction rates of two isotopes are nearly identical.

The defective nature of the matrix, when loops are handled, is of chief concern when using
the matrix decomposition methods mentioned above. In these cases, the standard eigenvector
method is not useful at all, while the generalized eigenvector and Schur decomposition are useful
depending on what type of loop handling is employed. If the straightened loop handling is used,
the generalized eigenvector method is sufficient to solve the problem completely. If explicit loop
handling is employed, however, the Schur decomposition is required, but there is the potential
that the triangular matrix that must be exponentiated is defective. In such situations, the simple
recursive algorithms that have been developed for solving functions of triangular matrices break
down and a generalized eigenvector or computationally similar method must be used to solve that
sub-problem[19][20].

In general, a study of the accuracy and speed of nineteen ways to compute this solution[16], all
dubbed “dubious,” was inconclusive, saying “that some of the methods are preferable to others,
but that none are completely satisfactory.” Although not directed at our specific problem, this
illuminating study chose three or four methods as “best” candidates, including specialized ODE
methods, a series method known to fail, and matrix decomposition methods, citing specifically
Schur decomposition and variants thereof.

With the same physical model as the generalized eigenvector method, another alternative is
to employ either of the Laplace inversion methods[8]. First, it should be noted, that when these
methods are applied to a linear chain without loops, they become two different representations of
the Bateman equations, one an exact sum of exponentials, the other an accurate expansion of a sum
of differences of exponentials, so organized to minimize round-off error. When loops are included,
however, both methods can be employed to get rapid and accurate results. Since they do not
solve the system as a matrix exponential, but rather calculate each term independently by taking
advantage of the nature of the physical model, they will not be prone to the errors found in many
matrix exponential techniques. Thus, the generalized eigenvector technique can be eliminated from
contention.

The issue of speed is becoming paramount as the codes are asked to provide results for larger
and more complicated systems as a result of more comprehensive and inclusive data libraries. It is
also clear that the matrix methods are unique in allowing the rapid solution of systems with exact
pulse history models. A transfer matrix, T', can be found to represent the transient for a single
pulse, a decay matrix, D, can be found to represent the transient for a single dwell time, and the
solution for n pulses is[14]:

N(t) = (TD)*"'TN,.

A variety of methods can be used to raise the matrix to this power, the most useful of which is
a finessed successive multiplication[21]. The drawback of the time-step based methods is that the
solution is generally not found as the result of a matrix transform, but rather, the number density
vector is found for the end of each time step and used as the initial value for the next time step.
As a result, these methods tend to be very slow, having to repeat all the calculations at each time
step.

Based on the above comments, the only methods which for this problem combine speed and
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accuracy are matrix decomposition methods and the Laplace methods. While the Schur decom-
position method is mathematically exact, the algorithms needed to perform the decompositions
may amplify the computational errors more than the Laplace techniques. Unfortunately, for both
the decomposition method and the exact Laplace inversion technique, the final solution has the
same drawbacks as the sum of single exponentials formulation of the analytical Bateman equation
method mentioned above, which can cause problems with nearly degenerate eigenvalues. On the
other hand, in cases where the expansion can be calculated with enough accuracy, the Laplace
expansion technique is perfect for removing these effects.

4 Conclusions and Recommendations

The above arguments all point to certain optimums in the approximations made for the calculation
of induced radioactivity and related values.

The first and most obvious recommendation is to use a method that has exact modeling of the
pulsed history. Research has shown that the modeling of an arbitrary pulsed system with a steady
state flux can and will produce severely erroneous results. There are methods available, in terms of
other physical approximations and mathematical solutions, which allow the exact pulsing solution
to be as accurate and fast as any other type of model.

Similarly, if efficient solution methods exist, there is little reason not to handle loops. Although
this does add complexity to the mathematical solution, the contribution of loops could be significant
in some problems. The method by which they are handled is really dependent on which mathe-
matical method is chosen and what the truncation philosophy is. It is important to note, however,
that with the existence of methods to solve linear chains with loops, a linear chain representation
opens the door to an adaptive calculation, one which uses the standard Bateman solution if no
loops exist, but uses one of the extensions, the Laplace techniques, if loops do exist.

A more contentious issue in physical approximations is that of truncation philosophy. The most
reasonable first rule is to truncate based on some comparison of the production of the last isotope
to the first isotope. Furthermore, the additional information gained from adding the restriction
that the decay scheme may only be truncated after a stable isotope easily balances the cost of
a larger problem. The other important truncation decision is what reference period to use while
performing the truncation calculations. Since extremely fast mathematical methods do exist, the
most reasonable approach is to solve the entire problem throughout the operation history and after
shutdown. Therefore, a relative production tolerance rule with a stable last isotope modification,
as defined in Table 1 is the best truncation philosophy.

Perhaps the subject of most debate is that of mathematical methods, yet a best choice does
exist. To allow the solution of the exact pulsed history in a reasonable time, a true matrix method
is necessary. To handle loops, as recommended above, neither the linear chain based Bateman an-
alytical method nor the eigenvector decomposition is useful. This leaves the Schur decomposition
method and the Laplace techniques. The inverse Laplace method is not subject to the compu-
tational errors that might arise in the decomposition. Further, the Schur decomposition results
in a matrix that then requires a robust method for the exponentiation of the triangular matrix.
Thus, the only advantage to Schur decomposition is that it can be used to handle loops explicitly.
The loop straightening method is as accurate as the explicit method within the tolerance being
determined in the truncation rules, hence there is no reason to add the additional computational
complexity of explicit loop handling. Therefore, the best mathematical methods are the Laplace
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techniques, especially if chosen adaptively with the simple Bateman solution.

While these issues are the most important in terms of speed and accuracy, there are many other
issues which should be considered when choosing an activation code for your problem. For example,
even if the code does use the optimum combination of these approximations, it may be important
that it allow for the solution of multi-dimensional problems in a variety of geometries. This is just
one of the many usability issues which must also be considered.

In conclusion, the optimum calculation uses an exact pulsing history, straightened loop handling
with linear chains, a relative production truncation rule with a stable truncation restriction, and
an adaptive mathematical method chosen from the Bateman solution and the Laplace techniques.
While many of these recommendations were being implemented in the GERAPH[2] code, the com-
plete set of recommendations has been implemented in a new code, ALARA, in the final stages of
development at the University of Wisconsin-Madison.
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