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Abstract

As a part of the RACC code improvement and upgrade project, a number of ma-

trix exponential calculational methods were analyzed with respect to the evaluation of the

nuclear transmutation and decay matrix equation system. The objective was to determine

which method implemented in RACC-Pulse provides the most reasonable computational

performance for pulsed/intermittent activation calculations for nuclear fusion devices. The

combination of the Taylor series expansion method for pre-shutdown calculation and linear

chain method for the post-shutdown calculation resulted in the best performance of the new

RACC-Pulse code.



1. Introduction

The neutron transmutation and decay processes in a fusion device can be described

by a system of coupled first order ordinary differential equations which can be written in a

general matrix form:

dN

dt
= AN(t) . (1)

The mathematical solution of the above matrix equation can be written in a simple concise

form,

N(t) = eAt × N(0) (2)

where eAt is called the matrix exponential and N(0) is the initial number density vector.

The matrix A contains both the total destruction rates (λ + σtφ) of all nuclides which are

the diagonal elements aii and the production rates (σiφ or λ) of all nuclides which are the

off-diagonal elements (aij).

There are a number of ways to evaluate the matrix exponential eAt. Cleve Moler

and Charles Van Loan described nineteen dubious ways to compute the exponential of a

matrix[1]. In the RACC code all nuclides involved in the transmutation and decay processes

in a material zone of a fusion device are sorted by their ZA numbers (Z is the atomic number

and A is the mass number). The production rates and destruction rates of all these nuclides

form a single matrix A for this zone. The dimensional size of matrix A can be greater

than 100 and depends on the number of input nuclides and the nuclides occurring in the

transmutation and decay scheme. However, the maximum number of the transmutation

types of a nuclide in the current data library is 10, though this number could exceed 30.

Since a nuclide is usually not coupled to many nuclides occurring in the transmutation decay

scheme, matrix A is a very sparse general matrix.

During the operation period matrix A can be tightly coupled depending on the

number of transmutation/decay chain loops. Matrix A is separable during the post shutdown

period because there are no decay chain loops for pure decay processes.
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The Taylor series expansion method, Schür decomposition method, Parlett method,

and linear chain method were all analyzed for evaluation of the matrix exponential of A

during both the operation period and the post-shutdown period.

2. Methods Utilized for the Operation Period

Because transmutation/decay chain loops occur in matrix A during the operation

period, the only reliable and efficient method to compute eAt during this period is the

Taylor series expansion method combined with the scaling and squaring technique. After

taking advantage of the sparsity of matrix A, this technique has proven itself to be very

efficient for the calculation of eAt. The new RACC-Pulse code utilizes this technique to

perform the radioactivity calculation for the operation period. As we will discuss in the next

section, other methods either cannot be applied for the operation period calculation or are

computationally inefficient.

2.1. Taylor Series Expansion Method

This technique uses a Taylor series expansion of matrix A combined with scaling and

squaring to compute eAt as follows:

B = (e
t∗A
2n )2n

= (eC)2n

eC = I + C +
C2

2!
+ ..... +

Ck

k!
+ ......

The truncation criteria for the Taylor series is:

||Ck/k!|| < eps ∗ max(abs(cij))

||Ck/k!|| :=
∑

(abs(cij)) .

During the operation period, if transmutation/decay chain loops are present, this

technique is the only reliable and efficient technique and can be quite efficient after taking

advantage of the sparsity of all matrices.
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3. Methods Utilized for the Post-Shutdown Period

For the post-shutdown period, a number of calculations need to be performed, one

for each after shutdown time period specified. During this period, decay processes are the

only relevant nuclear processes occurring which means that only linear chains are present in

the decay scheme. This leads to a simple structure for matrix A which can be separated

into lower and upper triangular matrices. The advantage of the triangular structure is that

very efficient methods exist for the evaluation of their matrix exponentials. In this section

the Taylor series expansion method, Schür decomposition method, Parlett method, and the

linear chain method are analyzed. The linear chain method is the most efficient method for

performing post-shutdown calculations.

3.1. Taylor Series Expansion Method

The post-shutdown calculation requires the computation of activity for several post-

shutdown periods. This means that a Taylor expansion for each individual time step is

performed which has proven itself to be computationally inefficient.

3.2. Schür Decomposition Method

The Schür decomposition of a matrix is the following:

A = QTQT

where T is an upper-triangular matrix. Once matrix A has been decomposed, the matrix

exponential is evaluated from the expression:

eAt = QeTtQT .

LAPACK routines [2] are used to perform the Schür decomposition. The evaluation of the

matrix exponential of an upper-triangular matrix is performed using an algorithm developed

by Parlett [3,4].
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This method does a Schür decomposition of matrix A once for all post-shutdown

periods. However, for each individual period the matrix exponential eTt must be evaluated.

This method has also been proven to be computationally inefficient.

3.3. Parlett’s Method

Because the decay processes are the only nuclear processes occurring during the post

shutdown period, only linear decay chains are present in the nuclide decay scheme. From a

physics point of view this means that all decay chains do not interfere with each other and

every decay chain can be represented by lower or upper triangular matrices; therefore matrix

A can be separated as follows:

A = U + L

where L is a lower triangular matrix and U is an upper triangular matrix.

The system of equations given by Eq. 1 can thus be separated into components:

dN1

dt
= LN1(t) (3)

and

dN2

dt
= UN2(t) (4)

where

N(0) = N1(0) + N2(0)

and

N(t) = N1(t) + N2(t) .

The separation of both A and N(0) is based on the decay information represented in matrix

A, from which every individual decay chain can be constructed. The initial densities of these

radioactive nuclides can then be found, from which the beginning nuclide of the individual

linear decay chains can be determined.

The solutions of equations (3) and (4) are:

N1(t) = eLt × N1(0) = El × N1(0) (5)
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and

N2(t) = eUt × N2(0) = Eu × N2(0) . (6)

Because L and U are lower and upper triangular matrices, El and Eu are determined by

using the following recurrence relations as described in [3,4]:

el
ii = eliit (7)

eu
ii = euiit . (8)

For lower triangular matrix El, i > j,

lii × el
ij − el

ij × ljj =
i−j−1∑

k=0

(el
i,i−k × li−k,j − li,j+k × el

j+k,j) . (9)

For upper triangular matrix Eu, i < j,

uii × eu
ij − eu

ij × ujj =
j−i−1∑

k=0

(eu
i,i+k × ui+k,j − ui,j−k × eu

j−k,j) . (10)

In our case, matrices A, L and U are all very sparse. Parlett’s method mentioned

above does not take advantage of the sparsity of these matrices, hence, a numerical example

has shown it to be computationally inefficient.

3.4. Linear Chain Method

During the post-shutdown period, matrix A is separable from the decay chain

construction point of view, hence, the linear chain method, based on the Bateman solution,

is a reasonable choice.

All decay chains occurring during the post-shutdown period can be constructed from

matrix A and the nuclear densities of all radioactive nuclides at shutdown. Once the decay

chains have been constructed, the linear chains are evaluated utilizing the Bateman equation

solution scheme implemented in the DKR-ICF [5] code.

In constructing linear chains from decay matrix A, we need to first determine the

starting nuclides of all the decay chains from the nuclear densities of all radioactive nuclides

at shutdown, which can be obtained from the solution of the pre-shutdown calculation.
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Every radioactive nuclide with nonzero nuclear density at shutdown is a beginning nuclide

of a specific decay chain. Starting from these nuclides and by searching the decay matrix A,

all decay chains can be constructed. In constructing all decay chains an array based balance

binary tree data structure is utilized [6]. Because of the sparsity of matrix A this technique

introduces some memory overhead. However, it is an efficient technique because of the tree

structure.

This method is the best method of all methods we have evaluated so far and has been

implemented in the RACC-Pulse code for the after shutdown radioactivity calculations.

4. Results and Conclusions

The sample problem of RACC-Pulse, which is described in detail in Appendix B of

the RACC-Pulse manual [7], is used to benchmark the above methods. The sample problem

is the water cooled 316SS nonbreeding blanket/shield design of the ITER fusion facility

considered during the ITER blanket option trade-off study. The calculation is performed for

a nominal fusion power of 3.0 GW and an average wall loading of 2.0 MW/m2. There are

a total of 15 zones and approximately 350 nuclides (stable + radioactive) involved in the

calculation. A 1 period 3 level pulsing scheme is used for this problem.

The total radioactivity results (Ci) for the above methods and the performance

parameters of these methods are shown in Table 1.
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Table 1. Comparison Results

After Taylor Schür Parlett Linear Chain
Shutdown Time Expansion Decomposition

0.000000s 0.2451e+07 0.2437e+07 0.2451e+07 0.2451e+07
1.00e+02s 0.2324e+07 0.2315e+07 0.2324e+07 0.2324e+07

1.00e+03s 0.2002e+07 0.1995e+07 0.2002e+07 0.2002e+07
1.00e+04s 0.1580e+07 0.1577e+07 0.1580e+07 0.1580e+07

1.00e+05s 0.1120e+07 0.1119e+07 0.1120e+07 0.1120e+07
1.00e+06s 0.9767e+06 0.9761e+06 0.9767e+06 0.9767e+06

1.00e+07s 0.6669e+06 0.6665e+06 0.6669e+06 0.6669e+06
1.00e+08s 0.2787e+06 0.2787e+06 0.2788e+06 0.2788e+06

1.00e+09s 0.4310e+04 0.4309e+04 0.4310e+04 0.4310e+04
1.00e+10s 0.5898e+03 0.5897e+03 0.5898e+03 0.5898e+03

CPU Time 2427.5s 8517.9s 4757.1s 1639.4s

MLDC — — — 4

MLDC: Maximum Length of Decay Chain considered

As noted from the table, the radioactivity results obtained from the Taylor series

expansion method, Parlett’s method and linear chain method are identical. However,

the result obtained from the Schür decomposition method differs from the others. From

additional cases we have investigated with these methods, the Schür decomposition method

suffered some significant errors for a number of them. In the linear chain method we set the

maximum length of the decay chain to be 4, which is a very good choice because more than

ninety percent of all decay chains have the decay chain length less than or equal to 4. From

Table 1 it can be clearly seen that the linear chain method’s performance is the best and is

the preferred technique for the post-shutdown period.
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