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1. Introduction

The purpose of this report is to summarize work performed by the University of Wisconsin
during March 1994-March 1995 in support of beam-plasma interaction experiments at Sandia
National Laboratories. During the past 4 years we have developed detailed collisional-radiative
equilibrium (CRE) and atomic physics codes which have been used to analyze spectra obtained in
PBFA-II experiments. In the past year, we have made substantial improvements in our capabilities
for modeling: (1) ion stopping powers, (2) radiation-hydrodynamics of beam-heated plasmas, and
(3) time-dependent collisional-radiative processes in anode and gas cell plasmas. A description of
the modeling improvements and their application to Sandia light ion beam experiments is described
in this report.

The tasks for the March 1994-March 1995 period are listed in Table 1.1. The first two
tasks concern the analysis of Kα emission spectra in PBFA-II Li beam experiments. These spectra
were obtained in experiments using planar, “plastic sandwich” targets (CH : Au : Al : CH).
In these experiments, the Al provides diagnostic information about the plasma conditions from
its Kα emission spectra, while the Au layer — via Rutherford scattering — provides diagnostic
information about the Li beam characteristics. Additional experiments with mixed Mg/Al tracer
layers were attempted, but useful Kα spectral measurements as yet have not been successfully
obtained. Nevertheless, the calculations of Mg Kα spectra discussed in this report should be
applicable to future experiments.

In Section 2, radiation-hydrodynamic simulations and spectral calculations for the flat-foil
Kα experiments are described. The primary input data to the calculations are the time-dependent
Li beam voltage and current density. The ion energy is deposited in the target using a stopping
power model based on the work of Mehlhorn [1]. The resulting time-dependent temperature and
density distributions, as well as the beam voltage and power density in the Al layer, were post-
processed with our CRE model to predict Kα emission spectra. Synthetic time-integrated spectra
were then obtained for direct comparison with experimental data by post-processing the computed
CRE spectra, and adding the effects of instrumental broadening. Well-diagnosed experiments of
this type are very valuable because good agreement between the calculated and measured Kα

spectra suggests a good understanding of key physics issues for light ion beam fusion [2] including:
(1) coupling of the Li beam energy to the target; (2) energy transport within the target; (3) atomic
processes affecting the target emission spectra; (4) the ability to diagnose the Li beam properties;
and (5) the ability to spectroscopically diagnose the target plasma conditions. Comparisons between
calculated and measured Kα spectra for PBFA-II Shots 5851, 5846, and 6347 are shown in Section 2.
Results are also shown for targets heated by Li beams with higher intensities to provide predictions
for future experiments.
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Table 1.1. Tasks for March 1994–March 1995

1. Generate atomic models for target materials and compute relevant beam-plasma interaction
cross sections for predicting inner-shell line emission.

2. Analyze spectral data obtained in PBFA-II experiments. Perform CRE calculations
to determine plasma conditions obtained in experiments — especially for two-material
experiments (e.g., Mg and Al).

3. Develop a time-dependent collisional-radiative model for analyzing spectra obtained in intense
light ion beam experiments.

4. Document results in final report to Sandia National Laboratories.

2



In Section 3, we describe a new approach for calculating ion stopping powers using a unified
self-consistent field model. This approach utilizes a muffin tin atomic model to compute finite
temperature electron distributions for the target plasma and a full Random-Phase-Approximation
stopping interaction function. The primary strengths of the model are that: (1) it includes the
stopping effects of electrons in ground state, excited states, and continuum states in a self-consistent
manner; thus, the “bound” and “free” electrons are not treated separately; and (2) it provides a
physically consistent picture at both high and low projectile energies so that a smooth transition
occurs between the LSS and Bethe limits. Results for Al and Au target plasmas are presented in
Section 3.

In Appendix A, sample results from our initial time-dependent collisional-radiative
calculations to study the ionization dynamics of SABRE anode plasmas are presented. These
results were presented at the American Physical Society Division of Plasma Physics Meeting in
November 1994 at Minneapolis, MN [3]. This model is being developed by H.-K. Chung as part of
her Ph.D. dissertation research, which will focus on the spectral analysis of PBFA-II Ar gas cell data
and its implications for light ion beam transport. The model is similar to that of our collisional-
radiative equilibrium (CRE) code [4,5], except that time-dependent multilevel atomic rate equations
are solved as opposed to steady-state rate equations. The model also uses the same detailed atomic
data bases [6,7] as used by our CRE code. Initial calculations have been performed for SABRE
anode plasmas. In addition, we have made several comparisons with previous calculations [8]. A
more detailed discussion of the anode plasma work will be presented in the future.

Finally, in Appendix B, we present results from Kα spectral calculations for Mg-Al targets
irradiated by intense Li beams. The work was presented at the 10th International Conference on
High Power Particle Beams in June 1994 at San Diego, CA.
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2. Analysis of Flat-Foil Kα Experiments on PBFA-II

Radiation-hydrodynamic simulations of PBFA-II Li beam experiments with flat-foil
(“plastic sandwich”) targets were performed using our BUCKY-1 simulation code [9]. The goal is
to determine whether the temperatures predicted in the Al layers in the radiation-hydrodynamics
simulations — which utilize measured beam parameters as input — are consistent with measured
time-integrated Kα satellite emission spectra. Time-dependent Li beam voltages and current
densities from several PBFA-II shots [10] were used in the simulations.

The major features of the radiation-hydrodynamics models are described in Section 2.1.
Results from radiation-hydrodynamics simulations of PBFA-II Shots 5851, 5846, and 6347 are
discussed in Section 2.2. At selected simulation times, the temperature, density, beam voltage,
and beam current density profiles in the Al layer were post-processed using our CRE code to
compute Kα satellite spectra. Comparisons of the calculated and measured Kα spectra are shown
in Section 2.3. Several simulations were also performed for relatively high intensity Li beams to
estimate target plasma conditions which could be achieved in future experiments. These results
are described in Section 2.4. A discussion of spectral calculations for Mg/Al foils is presented in
Apprndix B.

2.1. Radiation-Hydrodynamics Models

Calculations were performed using the BUCKY-1 radiation-hydrodynamics code. As is
illustrated in Fig. 2.1, this code integrates physics models from several codes: PHD-IV, CONRAD,
NLTERT, and EOSOPA. PHD-IV [11] is an ICF target physics code which simulates implosions,
explosions, ion beam energy deposition, fusion burn, charged particle transport, and target
breakup. It is a 1-D Lagrangian code which solves the single-fluid equation of motion with pressure
contributions from electrons, ions, radiation, and fast charged particle reaction products. Energy
transport in the plasma is treated with a two-temperature model — i.e., separate ion and electron
temperatures. Radiation emission and absorption terms couple the electron temperature equation
to the radiation transport equations. Radiation is transported using a choice of several models: (1) a
multigroup Eddington factor model; (2) a multigroup diffusion model; (3) a multiangle, multigroup
model based on the method of short characteristics [12]; or (4) an escape probability model [13,14]
for detailed line radiation transport.

CONRAD [15] is a 1-D radiation-hydrodynamics code which descended from PHD-IV
and MF-FIRE [16]. It is used to study the radiative and hydrodynamic processes within ICF
target chambers following the explosion of a high-gain target. It includes models to simulate the
stopping of target x-rays and fast debris ions in a buffer gas and the target chamber first wall.
Time-dependent vaporization of the first wall is also simulated.
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Figure 2.1. Schematic illustration of codes used to build the BUCKY-1 radiation-hydrodynamics
code.
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NLTERT [5] is a non-LTE radiative transfer code which has been used to analyze spectra
obtained in laboratory plasma experiments. Selected parts of this code were recently incorporated
into BUCKY-1 [17]. When this model is invoked, atomic level populations are calculated using
a collisional-radiative equilibrium (CRE) model at each hydrodynamic time step. By default,
the atomic populations are computed self-consistently with the radiation field; however, options
also exist where the user can specify that LTE (local thermodynamic equilibrium) populations or
optically thin populations (i.e., where photoexcitation and photoionization are neglected) be used.
After the atomic level populations are computed, radiation losses due to line emission are computed
using an escape probability radiation transport model. This model was also recently used to study
radiation transport effects in ICF target chambers with a single-species buffer gas [18].

EOSOPA [19] and ATBASE [7] are a suite of atomic physics codes which generate atomic
data for equations of state, multigroup opacities, and spectral analyses. Equation of state tables
are generated using a hybrid model in which high-density thermodynamic properties are calculated
using a muffin-tin model, while lower density properties are computed using a detailed configuration
accounting (DCA) model. Example results from EOSOPA are shown in Fig. 2.2, which shows
energy and pressure isotherms for Al. In the low-density regime, the nonlinear behavior due to
ionization/excitation is clearly seen. The cohesive, degenerate, and pressure ionization effects are
also apparent for the high-density regime. EOSOPA also computes high quality opacities for both
low-Z and high-Z materials.

2.2. Radiation-Hydrodynamic Simulations of PBFA-II Flat-Foil Kα Experiments

Figure 2.3 shows a schematic illustration of the plastic sandwich targets used in the
PBFA-II experiments, along with the layer thicknesses used to simulate Shots 5851, 5846, and
6347. Unless otherwise noted, the following assumptions and options were used in our radiation-
hydrodynamics simulations. In particular, we address the areas which significantly impact the
predicted target temperature: the beam parameters, the stopping power model, and the radiation
physics. Radiation was transported using a multigroup, multiangle model based on the method of
short characteristics. A radiation diffusion model was not used because the continuum for the lower-
Z regions was optically thin over a large part of the spectrum. For the Au region, opacities — which
include contributions from bound-bound, bound-free, and free-free transitions — were computed
using an unresolved transition array (UTA) model [19]. For the CH and Al regions, the line and
continuum radiation were treated separately. This was done to avoid overestimating radiation losses
from the low-Z regions. Continuum radiation from the low-Z regions was transported using the
same model as for the Au.

For most of the calculations described in this section, line radiation effects from the low-Z
layers were neglected. This was done in order to save computer time while assessing the effects of
various physical processes. When it was included, line radiation was transported using a frequency-
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Figure 2.2. EOSOPA hybrid model equation of state for Al. Isotherms of total energy density and
pressure.
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Figure 2.3. Initial target thicknesses used in simulation of PBFA-II flat-foil target experiments.
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and angle-averaged escape probability model in which each line is transported individually. This
requires knowing the atomic populations and opacities for each line. Atomic level populations were
computed at each hydrodynamic time step using a CRE model, which included effects of resonant
self-absorption. Line profiles include the effects of natural, Doppler, and Stark broadening. Because
of the hybrid nature of the model, line radiation which escaped a material region was assumed to
escape the entire target (e.g., Al line radiation was not reabsorbed by the Au). In addition, low-Z
line opacities did not contribute to radiative heating. Thus, the low-Z lines did not see radiation
from the Au. For the CRE line transport calculation, the atomic model consisted of 175 levels and
267 lines for Al, 71 levels and 254 lines for C, and 7 levels and 15 lines for H.

The stopping power model is based on the method developed by Mehlhorn [1]. However,
we use an adjusted stopping power because the experiment was not truly 1-D because the beam hits
the planar target at a 45◦ angle. To compensate for this, we multiplied the stopping power, (dE/dx),
by a constant determined by SOPHIA particle-in-cell (PIC) calculations [10]. The constant was
determined by equating the beam energy deposited per unit mass calculated with the PIC code
using the experimental geometry, to that using an enhanced beam power density for a geometry
in which the incident beam is normal to the target surface (which is the geometry used in the 1-D
radiation-hydrodynamic simulations). The (dE/dx) multipliers for PBFA-II Shots 5846, 5851, and
6347 are 1.535, 1.500, and 1.530, respectively. Note that these numbers are several percent larger
than

√
2, which accounts for the 45◦ tilt of the target with respect to the beam. The additional

enhancement occurs due to “focusing” effects, in which the beam ions above and below the plane
of the target converge at the target (additional heating can occur because ions can cross paths,
instead of having parallel trajectories).

In accounting for the 45◦ angle of incidence of the beam, one has a choice of enhancing
either the beam current density or the stopping power to attain a specific energy deposition rate
consistent with the PIC calculations. We chose to enhance the stopping power because this should
more accurately simulate the energy loss of an ion in a given layer. That is, the energy loss in a
layer of thickness ∆L is:

∆E =
(

dE

dx

)(
∆L

cos θ

)
,

where θ is the beam angle of incidence with respect to normal. Since θ = 0 in our radiation-
hydrodynamics simulations, one can get the appropriate ∆E by enhancing (dE/dx).

The Li beam parameters are constrained by PBFA-II ion diagnostics (magnetic
spectrometer, ion movie camera, etc.). In our radiation-hydrodynamics simulations we assume
a monoenergetic Li beam which is fully ionized. Time-dependent beam power densities and
voltages incident at the target surface were tabulated from SOPHIA runs [10]. In deriving the
beam parameters at the target surface, corrections for enhanced stopping power due to the heated
target plasma were also included.
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Figure 2.4. Beam parameters incident on the target surface in radiation-hydrodynamic simulations
of Shots 5851, 5846, and 6347. From [10].
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Figure 2.5. Spatial distributions of electron temperature, pressure, fluid velocity, and mass density
at times of 10, 20, 30, and 40 ns for the Shot 5851 baseline simulation.
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The beam parameters used in the radiation-hydrodynamic simulations of Shots 5846, 5851,
and 6347 are shown in Fig. 2.4, where the Li beam voltage, power density, and current density
incident on the target surface are shown as a function of time. (These times have an offset of 50–60
ns with respect to the SOPHIA output; the beam “turns on” at t = 0 in the hydro simulations.)
In each case the Li beam voltage starts at approximately 10 MeV and then decreases with time.
The beam power and current densities peak between 10 and 20 ns before decreasing at later times.
Figure 2.4 shows the peak power densities were approximately 0.8, 0.7, and 0.55 TW/cm2 for Shots
5851, 5846, and 6347, respectively, while the corresponding peak current densities were 0.25, 0.21,
and 0.17 MA/cm2. Note that for these shots only one quarter of the PBFA-II beam irradiated the
target, and that the target in each case was tilted at an angle of 45◦ with respect to the vertical.
It is also important to note that the maximum temperature in the Al region of the target is not
attained until roughly 40 ns. Thus, diagnosing the behavior of the beam at late times is important
for obtaining a good understanding of these flat-foil experiments.

Before doing a shot-to-shot comparison, let us first examine the particular case of 5851
in detail to assess the importance of various physical processes in these experiments. Figure 2.5
shows the temperature, pressure, fluid velocity, and mass density distributions at simulation times
of 10, 20, 30, and 40 ns. The results are plotted as a function of their original (pre-expansion)
positions in the target, which were 0–0.14 for the first plastic tamper, 0.14–0.68 for Au, 0.68–0.86
for Al, and 0.86–1.0 for the second plastic tamper. (Results are not displayed in the usual manner
of areal mass density (g/cm2) because the details of the low-Z regions are more difficult to see.) A
clearer picture of the time-dependent temperature in each region is shown in Fig. 2.6, where the
mean temperature (mass-weighted average over hydro zones) of each of the target layers is plotted
as a function of time. Here, it is seen that the temperature in all regions increases during the first
20 ns. After 20 ns the temperature of the Au is roughly constant out to about 40 ns, and later
decreases.

The Au remains at a lower temperature than the Al and CH regions (CH–1 ≡ the tamper
facing the incoming Li beam) because the lower-Z materials are less efficient radiators. The Au
is optically thick at virtually all frequencies (the exception being extremely high frequencies), and
thus radiates like a blackbody. The same is not true for Al and CH, which has been discussed
previously [20]. This can be understood by examining Fig. 2.7, which shows a calculated emission
spectrum for an Al plasma at T = 30 eV and n = 1 × 1020 ions/cm3. The plasma thickness
is 120 µm, which corresponds to a solid density (pre-expansion) thickness of 2000 Å. The lower
plot in Fig. 2.7 shows the frequency-dependent optical depths for the same calculation. Only for
the strongest optically thick lines does the flux approach the Planckian (blackbody) flux. The
continuum, however, is optically thin over much of the spectrum, and because of this the emitted
flux is substantially lower than the Planckian value. This allows the temperatures of the Al and
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CH regions to rise to a higher temperature. Note that this also presents challenges for accurately
simulating the radiation losses for plasmas with these conditions.

Figure 2.6 shows that for our Shot 5851 “base case”, the peak mean temperature in the Al
is 40 eV, and occurs at a simulation time of about 45 ns. This is well after the peak in the Li beam
intensity. The distribution of temperatures in the Al can be seen in Fig. 2.5, where at t = 40 ns
(solid curves) the temperature in the Al is seen to range up to about 45 eV, which is ∼ 15% higher
than the mean temperature shown in Fig. 2.6. By comparison, the peak temperature inferred from
the analysis of the Kα satellite emission spectrum for this shot is about 44 eV ± about 10–15%
[20]. A direct comparison of the simulation predictions with experimental Kα spectra is described
in Section 2.3.

The temperature evolution of the 2 tamper regions is seen to be very different. The
tamper last hit by the beam (CH-2) reaches a substantially higher temperature than the first
tamper (48 eV vs. 34 eV). This occurs because the kinetic energy of the Li beam drops significantly
as it passes through the Au, which in turn leads to a higher stopping power for the second tamper
region. Although the CH regions were not spectrally observed in these experiments, it seems that
interesting physics experiments could be performed in which the temperatures of materials on both
the incoming and outgoing sides of the Au could be inferred from their Kα spectra.

The importance of radiation losses in these experiments can be seen by examining Figs. 2.8
and 2.9. Figure 2.8 shows the energy partitioning for the total target as a function of time.
The total beam energy deposited in the target is 3.5 kJ/cm2, which is about 22% of the total
15.9 kJ/cm2 on target. Of this, roughly 50% is lost from the target by radiation by 40 ns. The
energy contained within the target at 40 ns is 1.6 kJ/cm2, of which ∼ 66% is in the form of internal
energy (temperature plus ionization), while the remainder is in the form of hydrodynamic kinetic
energy.

Figure 2.9 shows the time-dependence of the mean temperature in each of the target layers
from calculations of Shot 5851 using 3 different radiation models. The upper plot shows results from
our base case, which includes low-Z continuum opacities but no line transport. The bottom plot
shows results from a calculation in which radiation effects in all layers were completely neglected.
Thus, without radiation losses, the Au is heated to T = 47 eV, which is substantially higher than
the 25 eV for the base case. Similarly, the temperature in the Al layer reaches a peak of 56 eV,
versus 40 eV for the base case. If the temperature inferred from the Al Kα spectral analysis of
Shot 5851 is approximately correct (T ≈ 44 eV), these results indicate that the beam clearly has
the potential of heating the Al to a temperature consistent with the observed spectrum. However,
it is also clear that the predicted temperatures depend sensitively on the amount of radiative energy
lost by the target plasma.

13



Figure 2.6. Time-dependence of spatially-averaged temperature in each target region for Shot 5851
baseline simulation.
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Figure 2.7. Emission spectrum and frequency-dependent optical depths calculated for an Al plasma
with T = 30 eV, n = 1020 ions/cm3, and a thickness of 120 µm.
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Figure 2.8. Energy partitioning in total target (all layers) from Shot 5851 baseline simulation.
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Figure 2.9. Time-dependent temperatures in target layers from 3 radiation-hydrodynamics
simulations. Top: Baseline case, in which only continuum radiation transport is
considered for Al and CH regions. Middle: Both lines and continuum radiation
transport is included. Bottom: No radiation effects included.
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The middle plot in Fig. 2.9 shows results from a calculation in which line radiation from
the low-Z layers was transported using our CRE/escape probability model. This calculation results
in lower temperatures for the Al and CH regions; this should be expected because only radiation
loss effects are considered by this model. Heating of the low-Z lines due to radiation from an
external source (e.g., the Au) is not included in the model. In this calculation the peak mean
temperature in the Al reaches only 33 eV. One can argue that if the radiation flux from the Au
exceeds the intensity in the wings of an Al line (which is where photons escape in the case of
optically thick lines), then there should be net heating in that line. This effect, however, is not
included in our calculations. Thus, the results in the middle and lower plots of Fig. 2.9 in a sense
provide conservative lower and upper brackets arising from uncertainties in the radiation modeling.

Figure 2.10 shows the time-dependence of several quantities important for understanding
the Li beam energy deposition in the target. Plotted for the Al region are the mass-weighted means
for the electron temperature (in units of 10 eV), the charge state 〈Z〉, the stopping power (dE/dx)
enhanced by the multiplier 1.5 to account for the incidence angle of the beam, and Li beam kinetic
energy averaged over the Al layer. Perhaps the most interesting point is that at the time of peak
temperature the Li beam energy within the Al has fallen to below 3 MeV (or ∼ 0.4 MeV/amu). This
is near the peak in the stopping power curve — i.e., the region between the Bethe and Lindhard
limits — as is evidenced by the maximum in the (dE/dx) curve (dash-dotted curve). Thus, the
peak temperature in the Al should to some degree be sensitive to the physics near the peak in the
stopping power curve (see Section 3 for more details on stopping power curves).

The effect of radiative heating of the Al by the Au is predicted in these simulations to
be significantly smaller than direct heating by the Li beam. This is shown in Figs. 2.11 and 2.12.
(We again point out, however, that the complex interaction of the Al lines with Au radiation
may not be accurately simulated at this point.) Figure 2.11 shows the spatial distribution of
heating in the target by the Li beam and by radiation at four simulation times. In addition to the
radiative heating and cooling rates, the net radiative heating rate (heating minus cooling) is shown
as well. (The discontinuities occur at the interfaces between the various target layers.) The Au
(rinit ≈ 0.14− 0.68µm) is heated at a rate of ∼ 70− 80 TW/g up to t ∼ 30 ns, and then decreases
as the beam intensity decays. Comparison with the net radiative heating in the Au shows that
at t >∼ 20 ns the beam heating is nearly balanced by the radiative cooling. Because of this, the
temperature of the Au does not increase at these times. Note also that absolute heating and cooling
rates in the Au are quite large and nearly in balance because the Au is optically thick.

In the Al layer, the heating rate due to the Li beam is 200–300 TW/g. By comparison,
the total radiative heating rate in the Al by the Au, except near t ∼ 20 ns, is <∼ 100 TW/g. At
t <∼ 10 ns, the heating rate is lower because the target temperature is relatively low. At late times
the heating is also lower, presumably because the Al opacity is dropping due to it becoming more
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Figure 2.10. Time-dependence of the electron temperature, mean charge, stopping power, and
Li beam voltage from baseline simulation of Shot 5851. All quantities are spatially
averaged over the Al layer.
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Figure 2.11. Spatial distribution of Li beam energy deposition, net radiative heating, and absolute
radiative heating and cooling at times of 10, 20, 30, and 40 ns for Shot 5851 baseline
simulation.
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Figure 2.12. Net radiative heating rate in the Al layer as a function of time. In the base case (solid
curve), only continuum radiation transport was considered. In the simulation which
included line radiation transport for the low-Z layers, the contributions from the lines
and continuum are shown separately.
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ionized. Thus, it appears from these calculations that the heating of Al in these flat-foil experiments
is mostly due to direct heating by the beam.

Figure 2.12 breaks down the contribution to the net radiative heating rate in the Al layer
from lines and continuum. In the base case calculation (solid curve) line radiation effects of the
low-Z materials were neglected. The results show that there is net heating in the Al continuum
(most of the radiation likely originates in the Au) out to about 20 ns. At later times, there is net
cooling as the Al temperature rises above the Au temperature. In the calculation with line transport
effects included (“CRE lines”) the total net cooling — i.e., lines plus continuum — exceeds the
“continuum only” base case by roughly 50% at times >∼ 20 ns. Because the total net cooling in
the Al is larger in the CRE lines case, the peak temperature is lower (see Fig. 2.9).

It is also interesting to investigate the sensitivity of the predicted temperatures to various
target and beam parameters. Figure 2.13 shows the time evolution of the mean temperature in
each of the target layers from four different radiation-hydrodynamics simulations. In each case, the
calculations are identical to the “base case” calculation with the exception of a single parameter.
The plots on the upper half of Fig. 2.13 show results from calculations in which the stopping power
(left) and Li beam current density (right) were enhanced by 10%. The higher (dE/dx) lead to
an increase in the peak temperature of the Al of 14% (45.4 eV vs. 40.0 eV), while enhancing the
beam current density increased the Al temperature by 9%. Enhancing the (dE/dx) has a somewhat
larger effect because it results in a lower beam voltage in the Al after it passes through the Au.

The lower portion of Fig. 2.13 shows the effect of changing the target layer thicknesses.
When a thickness of the Au is decreased from 5400 Å to 3000 Å, the peak temperature in the Al
decreased to 34.4 eV (14% lower than the base case). This is due to the fact that the Al sees a
higher beam voltage when the Au is thinner, and thus has a lower stopping power. When a thicker
Al layer is used (7000 Å vs. 1800 Å) the maximum temperature predicted for the Al is slightly
lower (37.6 eV vs. 40.0 eV). This appears to be due to the Li beam ranging out in the thicker Al
at late times.

We now compare the predictions for several PBFA-II shots in which Al Kα satellite spectra
were recorded from flat-foil targets. Figure 2.14 shows the time-dependent mean temperature in
each target layer for Shots 5851, 5846, and 6347 using the beam parameters shown in Fig. 2.4.
The Kα spectra observed for these shots were qualitatively similar [2], suggesting the temperatures
attained in the Al layers were roughly the same. The peak temperatures in the Al from simulations
of Shots 5851 and 5846 are 40 and 41 eV. On the other hand, the peak temperature predicted
for Shot 6347 was only 31 eV. This is clearly the result of the lower beam intensities used in this
calculation (see Fig. 2.4).

The lower temperature predicted for Shot 6347 is somewhat puzzling at this time since its
Kα satellite spectrum is similar to that of Shots 5851 and 5846 [2]. One possible explanation is the
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Figure 2.13. Time-dependence of mean temperature in each target layer from 4 different radiation-
hydrodynamics simulations. Comparison with our Shot 5851 baseline case shows
the sensitivity of the temperatures to the stopping power (upper left), the Li beam
current density (upper right), and the thicknesses of the Au and Al layers. See text
for calculation details.
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Figure 2.14. Time-dependence of mean temperatures in each target layer from simulations of
PBFA-II Shots 5851, 5846, and 6347.
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true Li beam intensity for Shot 6347 was higher than that used in the simulation, or its pulse width
was significantly longer. It is hard to explain this apparent inconsistency between the Kα spectrum
and beam diagnostics for Shot 6347 on the physics models in the radiation-hydrodynamics and/or
CRE codes because one would expect similar inconsistencies to show up in Shots 5851 and 5846.
On the other hand, the radiation-hydrodynamics simulations for Shots 5851 and 5846 appear to
predict temperatures which are more consistent with their Kα satellite spectra.

This suggests that to “first order” a good understanding of the basic physics exists of how
the target is heated and how the Kα satellite spectrum is formed. The radiation-hydrodynamics
calculations have also been used to identify which physical processes most influence the target
temperatures attained in the flat-foil PBFA-II experiments. We find for these types of experiments
that it is desirable to be able to accurately diagnose the beam characteristics at relatively late times
in the pulse, which is when the peak temperatures in the Al are achieved. In regards to modeling,
two areas which play a key role in these experiments are stopping power physics and radiation
transport. In particular, the interaction between the Au radiation and low-Z line opacities is not
particularly well-understood at this time. Theoretical stopping power work which could potentially
lead to a more accurate picture of fast ions stopping in hot plasmas is discussed in Section 3.

2.3. Comparison of Experimental and Simulated Kα Satellite Spectra

In this section, we present results from CRE/atomic physics calculations of Kα satellite
emission spectra based on the radiation-hydrodynamics target plasma conditions and Li beam
parameters described in Section 2.2. To make a direct comparison with measured time-integrated
Kα spectra, we produce “synthetic” time-integrated spectra using the following procedure. The
spatial distribution of temperatures, densities, and Li beam current densities and kinetic energies in
the Al layer of the target are output at selected times (every 2.5 ns) in the radiation-hydrodynamics
calculations. This data is then used as input for our CRE calculations to compute the Kα satellite
spectrum at each simulation time. The calculated spectra are then time-integrated, and convolved
with a Gaussian with a FWHM of 1.5 eV, which corresponds to an instrumental resolution of
λ/∆λ ≈ 1000.

Details of the atomic physics and collisional-radiative models have been described in detail
elsewhere [4–6]. The major features of these codes are summarized in Tables 2.1 and 2.2.

We now describe results based on 3 radiation-hydrodynamics simulations. The first is our
baseline calculation for Shot 5851, which predicted a peak mean temperature in the Al layer of
40 eV. The second is the simulation of Shot 6347, in which the peak Al temperature was calculated
to be only 31 eV. The third is from the simulation of Shot 5851 in which radiation losses were
neglected, and the maximum Al temperature was 56 eV. This set of calculations therefore provides
insights on how the Al Kα spectrum changes for temperature differences of ∼ 30%.
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Table 2.1. Major Features of Collisional-Radiative Equilibrium Code

• Multilevel, steady-state atomic rate equations are solved self-consistently with the radiation
field and ion beam properties.

• Any state in the atomic model can be coupled to any other state; thus, transitions between
excited states of differing ions can be considered, as can transitions between non-adjacent
ions.

• Ion beam-induced multiple ionization effects are included as direct transitions in the statistical
equilibrium matrix equations.

• Emission and absorption spectra include contributions from bound-bound (lines), bound-free
(recombinations), and free-free transitions (Bremsstrahlung).

• Inner-shell line emission induced by intense ion beams is calculated by tracking the populating
and depopulating rates of autoionizing levels which are explicitly included in the model.

• Line shapes include effects of natural, Doppler, Auger, and Stark broadening.

• Radiation transport is modeled using either:

(i) an angle- and frequency-averaged escape probability method, or

(ii) a multiangle, multifrequency model based on the second-order form of the transfer
equation.
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Table 2.2. Major Features of Atomic Physics Models

• Atomic structure and radiative data are computed using configuration interaction (CI)
method with Hartree-Fock wavefunctions.

• Multiconfiguration Hartree-Fock and Dirac-Fock calculations provide accurate transition
energies and oscillator strengths for lines of interest.

• Atomic collisional data are computed using a combination of distorted wave, Coulomb-Born,
and semiclassical impact parameter models.

• Ion-impact ionization cross sections are computed using a plane-wave Born approximation
model with Hartree-Fock wavefunctions and with the inclusion of binding energy, Coulomb-
deflection, and relativistic corrections.

• Multiple ionization cross sections are computed using an independent event model with a
binomial distribution probability.

• Term-dependent Auger rates and fluorescence yields are calculated using an LS coupling
formalism with Hartree-Fock wavefunctions.
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Figure 2.15 compares the experimental and calculated time-integrated Kα satellite spectra
from Shot 5851 (baseline case). Calculated spectra (bottom) are shown for integration times up to
10, 20, 30, and 55 ns, thus showing the buildup in the spectrum with time. The results show that
the bulk of the emission from the F-like (cold) and O-like satellites comes from times <∼ 10 ns,
and N-like and C-like at times <∼ 20 ns. Roughly half of the B-like emission occurs between 10
and 20 ns. Thus, the satellites with the strongest intensity in the experimental spectrum (O-like
through B-like) likely emit the majority of their photons during the peak of the Li beam intensity
(t ∼ 10 − 20 ns; see Fig. 2.4). Most of the emission from the Be-like through He-like satellites is
predicted to occur at t <∼ 35 ns (see Fig. 2.15), which is somewhat earlier than the time at which
the maximum Al temperature is attained in the simulations. Little emission occurs at later times
for two reasons: (1) the beam current density is decreasing, and (2) the beam-impact ionization
cross section is decreasing because of the lower Li beam kinetic energy in the Al. Between 20 ns
and 35 ns the current density drops by roughly 50% and the beam voltage in the Al drops from
about 7.3 MeV to 3.6 MeV (see Fig. 2.10). The latter leads to a decrease in the beam-impact
ionization cross section by about a factor of 5, as is shown in Fig. 2.16. Thus, the total rate of
K-shell ionizations (R ∼ JB · σK(EB)) drops by about one order of magnitude between 20 and
35 ns. It therefore appears likely, based on the above simulations, that there is little contribution
to the Kα spectrum after t ∼ 35 ns. This would suggest that the peak temperatures that occurred
in the Al were not “recorded” in the measured spectrum.

Figure 2.17 shows the calculated Kα spectra at 5 ns intervals for the Shot 5851 baseline
case. For clarity, the Heα through Be-like Al spectral region is enhanced on the right side of the
figure. Note the clear dropoff in Kα line intensities at later times due to the lower Li beam kinetic
energies in the Al.

Figure 2.18 compares synthetic time-integrated spectra for the Shot 5851 baseline case,
Shot 5851 with no radiation losses, and Shot 6347. Again, the Heα to Be-like spectral region is
enhanced for clarity (on the right). For the 5851 baseline case, and Li-like satellite fluxes are
predicted to originate between 15 ns and 35 ns in the simulation, suggesting the Kα spectrum
for these lines forms over a fairly long period of beam pulse. It is also seen that for the 5851
baseline case that the intensities of these higher ionization stage satellites are significantly lower
than the experimental values. For instance, the He/Li ratio — i.e., the Heα intensity divided by
the Li-like satellite intensities (integrated from 7.780 Å to 7.885 Å) — is 0.053. By comparison,
the experimental value is 0.28. Similarly, the calculated Li/Be ratio is 0.24, while the experimental
value is 0.58. (Note that roughly half of the intensity quoted for the experimental He value is due
to a second feature located 17 mÅ to the long-wavelength side of the Heα [2]; this suggests the
observed Heα/Li ratio is ∼ .14).

The situation for Shot 6347 is substantially worse because of the lower predicted
temperatures in the Al. Very little intensity from the Heα and Li-like satellites is predicted in
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Figure 2.15. Comparison of time-integrated experimental and simulated Al Kα satellite spectra for
Shot 5851.
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Figure 2.16. Li-impact ionization cross-section for K-shell of Be-like Al: 1s22s12p1 → 1s12s12p1.
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Figure 2.17. Calculated Kα satellite spectra for Shot 5851 baseline case at 5 ns intervals.
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Figure 2.18. Time-integrated Al Kα spectra from 3 simulations. Top: Shot 5851 baseline
simulation; middle: Shot 5851 with no radiation losses; bottom: Shot 6347. The
curves on the right show the intensities in the Heα through Be-like region, magnified
by a factor of 5 for clarity.
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the simulations. On the other hand, in the simulation of 5851 which neglected radiation losses,
significantly more radiation from the Heα line and Li-like satellites is predicted. In this case,
the calculated He/Li ratio is 0.12, while the Li/Be ratio is 0.40, which is in substantially better
agreement with the experimental spectrum.

In summary, it appears the target temperatures predicted from the radiation-
hydrodynamics simulations using measured Li beam parameters from Shots 5851 and 5846 are
somewhat low compared to those inferred from their Kα satellite spectra. This is indicated by the
fact that the calculated intensities of the Heα and Li-like satellites are weaker than the observed
values. For Shot 6347, the calculated temperatures in the Al region of the target are even lower,
thereby producing an even larger discrepancy with the measured Kα spectrum.

There are several possible explanations for the calculated temperatures being too low.
First, the Li beam parameters used in the simulations may be inaccurate. This in some sense is
supported by the fact the beam parameters inferred for Shots 5851 and 6347 are very different —
with the beam intensity for 6347 being ∼ 50% lower — while their Kα spectra are qualitatively
similar. Also, the beam parameters inferred using different diagnostics for the same shot can vary
significantly. Calculations performed for Shot 5851 using Li beam current densities which are
∼ 25% greater than those inferred from the data produce significantly better agreement with the
Kα spectrum.

A second possible source of error is the stopping power model for Li ions in Au and Al. If
the model underpredicted the Au stopping power, the beam voltage in the Al layer would be too
high. This has two competing consequences: (1) the Al stopping power would be too low, resulting
in a lower temperature for the Al; and (2) the beam-impact ionization cross sections would be too
high, resulting in an enhancement of the Kα satellite line intensities for the ions present at that
particular time. In future calculations, we will attempt to utilize stopping powers from the model
described in Section 3.

A third possible explanation is the interaction of the radiation emitted from the Au layer
and the Al. In the radiation-hydrodynamics simulations, the heating at photon energies where Al
lines dominate the opacity was not considered. Thus, the radiative heating of the Al by the Au
may have been underestimated. It is also worth noting that the effects of the Au radiation have
also not been included in the CRE Kα spectral calculations for the Al. These effects could be
considered in more detail with relatively minor changes in our models. It would also be useful to
design experiments to isolate the effects of some of the physical processes described above.

Fourth, if significant contaminants (non-Li ions) were present in the beam, particularly
at relatively late times (t >∼ 20 ns) when the Heα and Li-like Al satellites are formed, this could
produce an anomalous source of heating, and perhaps also an anomalous source of ion-impact
ionizations which might have influenced the Kα satellite spectra.
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It is also worth noting the rather long times over which the Heα and Li-like lines are built
up in the simulations (see Figs. 2.15 and 2.17). In previous work [20] we described how Kα line
intensity ratios could be used to deduce target plasma conditions. We feel this is a particularly
powerful diagnostic technique for intense light ion beam experiments in which time-resolved spectra
can be obtained. However, because the times over which the Kα emission lines form can be fairly
long, one must be somewhat cautious when applying this technique to time-integrated spectra.

To conclude, we feel a reasonably good overall understanding of these PBFA-II flat-foil
experiments has been achieved. Although several discrepancies appear to remain in the analysis
of these experiments, it is felt that considerable progress has been made in developing a better
understanding of some of the key physics issues for light ion fusion that were mentioned in the
introduction and which motivated these experiments [2]. We have examined the sensitivity of
predicted results to various physical effects, target parameters, and diagnostic uncertainties. This
analysis has also led to an improved understanding of the atomic processes affecting the formation
of Kα satellite spectra in intense Li beam experiments, which could prove to be a very useful
technique for diagnosing target plasma conditions in future light ion fusion experiments.
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2.4. Simulation of Higher Intensity Li Beams

In this section, we present results from simulations for relatively high intensity Li beams.
The purpose is to provide predictions for what can be expected in future PBFA-II or PBFA-X
experiments. These simulations were done in a very simple manner. The model parameters and
assumptions were the same as in the “base case” calculation of Shot 5851 (see Section 2.2), except
that the current density was multiplied by a constant.

Figure 2.19 shows the time-dependent mean temperatures in each of the target layers.
The top plot corresponds to the Shot 5851 base case (reproduced here for convenience). The
middle and bottom plots show results from calculations in which the Li beam current density
was enhanced by a factor of 2 and 3, respectively. Note that the temperature of the Au remains
relatively low (T <∼ 40 eV) throughout the beam pulse. This again is due to the fact that the Au
is optically thick and a very efficient radiator. The Al, on the other hand, is able to attain a much
higher temperature, scaling roughly linearly with the beam current density. Thus, our calculations
suggest that by enhancing the current density by a factor of about 2.5 over that of Shot 5851
that one could obtain an electron temperature in the Al of ∼ 100 eV. In experiments of this type,
one would of course also want to choose a somewhat higher-Z tracer than Al to provide spectral
diagnostic information.
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Figure 2.19. Time-dependent mean temperatures in each target layer from simulations in which
Shot 5851 Li beam current densities were multiplied by factor of 1 (top), 2 (middle),
and 3 (bottom).
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3. An Unified Self-Consistent Field Model for Ion Energy Deposition in Ion-
Driven Inertial Confinement Fusion Targets

3.1. Introduction

For many years, the stopping of energetic ions in matter has been a subject of great interest
to theoretical and experimental physicists. In the context of ion driven-inertial confinement fusion
(ICF) experiments, the stopping power of ions in matter in both solid and plasma states is crucial
for target design. For a reliable diagnostic evaluation of ion beam and target parameters — such as
beam intensity, temperature, and density — one must know the stopping power accurately. Several
comprehensive reviews of calculations and measurements of ion stopping power in ICF targets have
been given by Mehlhorn [21,22], Deutsch [23], and Peter [24].

For typical plasma conditions in ion beam-target interaction experiments, the target
plasmas are often partially ionized. Both bound and free electrons can therefore contribute to
the stopping power. A commonly used approach for calculating ion stopping powers in partially
ionized plasmas is to treat the stopping electrons as two components: those bound to the plasma
ions and those which constitute the plasma free electrons. The number of free electrons in the
plasma is determined by solving the Saha equation. The contribution of each group of electrons to
the stopping power is calculated separately. For example, many stopping power calculations [21,25]
use the Bethe equation [26] for the bound electrons and use a separate term for the plasma free
electrons. A weakness of this approach is that the “bound” and “free” electrons are not treated self-
consistently. If we represent the effect of the plasma by a fluctuating microfield, the pertubations
of it can cause an orbital electron to have some nonzero probability of becoming unbound from
its original nucleus. However, an electron which is unbound in a one-center system may still be
bound in a two-center system consisting of the original nucleus and a neighboring ion. Moreover,
the electron may also be bound in a 3,4,..., center system which includes additional neighboring
ions. A relevant discussion of these quasi-free electrons has been given by More [27], who makes
use of the formal collision theory to describe these electrons within the framework of the ion sphere
atomic model. Since the characteristic interaction velocities of “bound” and “free“ electrons are
different in ion stopping, the “quasi-bound” electrons play the role of bridging them. The effects
of “quasi-bound” electrons on stopping power have not been studied in detail before. Another
drawback of the combined stopping power model is that it uses different models for different energy
regimes, and the separation boundary of “low” and “high” energy regimes is somewhat ambiguous.

In 1963 the first unified approach to ion stopping and range theory was made by Lindhard,
Scharff, and Schiott [28] and their approach is commonly called the LSS-model. This work
brought together Lindhard’s elegant dielectric formulation of stopping theory and local density
approximation, and bridging approximations were made so that calculations of stopping power of
cold material could, for the first time, be made within a single model. However, since the LSS-model
is based on Thomas-Fermi statistical atoms, it naturally shows no shell effects and is only accurate
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for atoms with many electrons in the intermediate range where they are neither fully stripped
nor almost neutral. With the LSS-model it is possible to predict the ion stopping power of solids
within a factor of 2. Later on, significant improvement [29] has been made with the incorporation
of more realistic Hartree-Fock atoms into the LSS-model. Now, a natural question should be asked
is how should we extend the LSS-model to form a single unified model that is capable of accurately
predicting the ion range and energy deposition profile as a function of material composition, density,
temperature, and degree of material ionization for a variety of different ionic species and beam
energies.

In this work we develop a unified self-consistent-field model for ion energy deposition
in ion-driven inertial confinement fusion targets. As a starting point, we noticed while looking
through many calculations of cold material stopping power in the framework of the LSS-model that
the overall accuracy is much better when the solid state Hartree-Fock electron density distribution
is used instead of an isolated Hartree-Fock atomic model. On the other hand, Lindhard’s stopping
power formalism needed to be extended to included finite temperature effects. Hence the present
work is concerned with establishing two main points.

The first main point is how to choose an atomic model which is appropriate for the
conditions relevant to the ion-driven inertial confinement fusion targets. The requirement for the
model is that it should recover the electron density distributions of both solid-state and isolated
atom Hartree-Fock models in the corresponding conditions. In 1979 Liberman [30] developed a
self-consistent-field “muffin-tin” atomic model for high density plasmas. This model has much of
the simplicity of an isolated atom but captures much of the physics of the band-structure model.
It provides a self-consistent treatment for both “bound” and “free” electrons in a wide range of
plasma conditions. We will use this atomic model to determine the electron density distribution
function. Since we are interested in both low-Z and high-Z materials, the relativistic formulation is
used. The second main point of this work concerns the stopping characteristics of the ICF-relevant
hot plasmas with an electron temperature comparable or smaller than the Fermi temperature. In
this respect, we take advantage of the full Random Phase Approximation (RPA) dielectric function
developed by Maynard and Deutsch [31].

In Section 3.2 we review the Lindhard stopping power formalism and the local density
approximation which form the framework of this study. In Section 3.3 we describe the muffin-tin
atomic model used to compute the electron distributions of the target atoms. In Section 3.4 we
discuss the full RPA stopping interaction function. Numerical results and discussions are presented
in Section 3.5. A summary of this investigation is given in Section 3.6.
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3.2. Lindhard’s Formalism of Stopping Power and Local Density Approximation

For an ion of charge Ze moving with velocity V in a medium of uniform density ρ, the
energy loss due to electron excitation can be conveniently written in the form

−dE

dx
=

4π
m

(
Ze2

V

)
ρL(ρ, V ) , (3.1)

where L is the stopping number and m is the mass of electron. In the dielectric formalism, L is
written as

L =
i

πω2
0

∫ ∞

0

dk

k

∫ kV

−kV
ωdω[ε−1(k, ω) − 1] , (3.2)

where ω0 is the plasma frequency; i.e.,

ω2
0 =

4πe2ρ

m
, (3.3)

and ε(k, ω) is the wave number- and frequency-dependent longitudinal dielectric constant.

Lindhard’s formalism for the interaction of a charged particle with a free electron gas
makes the following assumptions:

• The free electron gas consists of electrons at zero temperature (single electrons are described
by plane waves) on a fixed uniform positive background with overall charge neutrality.

• The initial electron gas is of constant density.

• The interaction of the charged particle is a perturbation on the electron gas.

• All particles are non-relativistic.

With these assumptions, Lindhard obtained the stopping number, L, as

L =
6
π

∫ V/VF

0
udu

∫ ∞

0
dz

z3f2(u, z)
[z2 + χ2f1(u, z)]2 + [χ2f2(u, z)]2

, (3.4)

where

f1(u, z) =
1
2

+
1
8z

[1 − (z − u)2]
∣∣∣∣ln z − u + 1

z − u − 1

∣∣∣∣
+

1
8z

[1 − (z + u)2]
∣∣∣∣ln z + u + 1

z + u − 1

∣∣∣∣ (3.5)

and

f2(u, z) =




1
2πu for z + u < 1

( π
8z )[1 − (z − u)2] for |z − u| < 1 < z + u

0 for |z − u| > 1 .

(3.6)
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The quantities z and u are the reduced wave number and frequency:

z =
k

2kF
and u =

ω

kVF
(3.7)

with kF and VF denoting Fermi wave number and velocity which are related to Fermi energy as

EF =
1
2

mV 2
F ≡ h̄2k2

F

2m
=

h̄2

2m
(3π2ρ)2/3 . (3.8)

The dimensionless quantity χ2 is defined by

χ2 =
V0

πVF
, (3.9)

with V0 = e2/h̄ denoting the Bohr velocity. Some typical curves illustrating the variation in the
Lindhard stopping number with electron density and energy are shown in Fig. 3.1.

The Lindhard stopping power formalism is a many-body self-consistent treatment of
an electron gas responding to a perturbation by a charged particle. It naturally includes the
polarization of the electrons by the charged particle, the resultant charge-screening, and the plasma
density fluctuations. It treats smoothly both individual electron excitation and collective plasmon
excitations without separate “distant” and “close” collision processes. However, Eq. (3.1) is strictly
valid only for a uniform free electron gas. For a partially ionized plasma, the electron density
distribution is no longer uniform because of the presence of bound electrons. In such cases, the
Lindhard stopping power formalism can still be directly applied with the use of the local-density
approximation [32].

In the local-density approximation, the nonuniform electron cloud is divided into small
independent volume elements, and the electron density distribution in each volume element is
assumed to be uniform. The stopping power is calculated for a charged particle in a free electron
gas of each volume element’s density, and the final stopping power is computed by averaging over
these values, weighted by their distribution in the nonuniform electron cloud; i.e.,

(
−dE

dx

)
=

4π
m

(
Ze2

V

)2 ∫ ∞

0
ρ(r)L(ρ, V )4πr2dr , (3.10)

where ρ(r) is the spherically-averaged electron density of the target atom.

It can be seen from Eq. (3.10) that the electronic stopping of an ion in a plasma is
determined by two key functions, the electron density distribution function ρ(r) and stopping
number L(ρ, V ).

3.3. Atomic Model And Electron Density Distribution Function

The electron density distribution of an atom is affected by its surrounding environment.
This is particularly true for the outer-shell electrons. Figure 3.2 illustrates the difference between
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Figure 3.1. Variation in Lindard stopping number with electron density for select projectile
energies.
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the calculated electron distribution for an isolated atom (denoted HFS for Hartree-Fock-Slater)
and that of the same atom in a solid-state lattice [33]. It can be seen that there is a pronounced
difference in the spatial variation of the solid-state and isolated atomic electron densities away from
the interior of the target atom due to solid-state bonding effects. It was found [34] that this spatial
variation in electron density gives rise to a marked change in density-averaged stopping number.
Therefore, it is necessary to use solid-state electron densities in the calculation of stopping power
of solids.

What should be the appropriate electron density distribution function in stopping power
calculations for a plasma atom? To date, the isolated atom model has been most commonly used
in calculations of ion stopping powers for plasmas. However, just as for solids, its applicability
to hot dense ICF plasmas is questionable [22] because of the marked perturbation of surrounding
environment. In order to account for environmental effects on the electron distribution properly,
we choose a self-consistent-field “muffin-tin” atomic model [30] in our stopping power calculations.
One important feature of this model is that it smoothly connects the solid-state self-consistent-
field atomic model and the isolated atom Hartree-Fock model. It naturally extents the solid-state
Hartree-Fock model into finite temperature, high-density plasmas. On the other hand, in the low
density regime it correctly describes an isolated atom or an ion in equilibrium with an electron gas.
Therefore, plasmas over a wide range of temperatures and densities can be treated with this atomic
model.

Figure 3.3 illustrates several aspects about the charge distribution for this model [30]. At
the center of a spherical cavity is a point nucleus, outside the cavity there is a uniform distribution
of positive charge which takes the place of the surrounding ions. There are sufficient electrons in the
system to give overall electrical neutrality, and the additional requirement of electrical neutrality
inside the sphere is imposed. A muffin-tin approximation is used for the electron density outside
the sphere. The electrons are governed by a set of self-consistent-field one-electron Dirac equations:

[c	α · 	ρ + βc2 − c2 + V (r)]φi(	r) = εiφi(	r) , (3.11)

where φi(	r) is the normalized one-electron orbital function. The potential function is

V (r) =




−Z
r +

∫
r′<R

ρ(r′)
|�r−�r′| − [3π2ρ(r)]1/3

π − ν for r < R

− (3π2ρ̄)1/3

π for r > R ,

(3.12)

where R is the radius of the cavity which is electrically neutral, and is determined by the conditions
of the plasma. The Lagrangian multiplier ν is given by

ν =
{[

4 − ρ̄

ρ(R)

]
(3π2ρ̄)1/3 − 3[3π2ρ(R)]1/3

}
/4π . (3.13)
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Figure 3.2. Radial electron density profiles for neutral aluminum atoms. Results for free atoms
[H-F-S] and atoms within a solid-state [M-J-W] lattice are shown.
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The electron density itself is given in terms of normalized one-electron orbital functions and muffin-
tin approximation

ρ(r) =




∫
ρ−(�r) sin θ dθ dϕ

4π r < R

∫
x>R

ρ−(�x) d�x∫
x>R

d�x
= ρ̄ r > R

(3.14)

ρ−(	r) =
∑

i

ni |φi(	r)|2

and the orbital occupation number is determined by the Fermi-Dirac distribution function:

ni =
1

exp
[

(εi−µ)
kT

]
+ 1

, (3.15)

where µ is the chemical potential of the plasma. The sum in Eq. (3.14) includes electrons in ground
states, excited states, and an integral over the continuum. The continuum states are treated on
the same basis as the bound states in this model, and as a result there is a smooth transition from
bound state to narrow resonance and then to broad resonance. The implication of this treatment
is that there is no sharp cutoff in the statistical distribution between “bound” and “free” electrons.

The electron density distributions generated by this atomic model are shown in Fig. 3.4
and Fig. 3.5. Figure 3.4 shows the calculated electron density distribution of a gold atom at normal
matter density along with that of the isolated atom Dirac-Fock calculation. It is seen that while the
muffin-tin electron density distribution is almost identical to that of the isolated atom for inner-
shell electrons, there is a significant difference in the outer-shell regime. The temperature effect on
electron density distributions is shown in Fig. 3.5. As the temperature increases, more and more
electrons are excited and ionized. Therefore, we see that the electron density decreases in the inner
region and increases in the outer region. It is important to note that the muffin-tin model provides
a self-consistent picture for electrons in all states.

3.4. The Random-Phase-Approximation Stopping Interaction Function

For ICF-relevant hot dense plasmas, the standard Lindhard stopping number (Eq. 3.4)
is no longer valid. In order to extrapolate the zero-temperature Lindhard stopping quantity to
plasmas at any temperature, Maynard and Deutsch [31] have developed a model which makes use
of the full RPA dielectric function to give formulae for the temperature-dependent stopping number
of electron stopping:

L =
6

πχ2

∫ V/VF

0
udu

∫ ∞

0
dz

z3χ2f2(u, z)
[z2 + χ2f1(u, z)]2 + [χ2f2(u, z)]2

(3.16)
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Figure 3.3. A schematic charge distribution for the “muffin-tin” atomic model: (a) a point nucleus
at the center of a spherical cavity; (b) a constant positive charge density outside the
cavity which represents surrounding ions; (c) a spherically symmetric electronic charge
density inside the cavity; (d) a volume averaged electronic charge density outside the
cavity. R is the radius of the cavity.
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Figure 3.4. Comparison of isolated atom Dirac-Fock radial electron density with that from the
muffin-tin model.

46



Figure 3.5. Radial electron density profiles for gold at selected temperatures. Results are calculated
with muffin-tin atomic model.
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where

f1(u, z) =
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bn

)

+ tan−1
(

P+ − an

bn

)
− tan−1

(
P− + an

bn

)
− tan−1

(
P− − an

bn

)]}
(3.17)

f2 = −πTe

8z
ln




1 + exp
[

γ−P 2
+

Te

]

1 + exp
[

γ−P 2
−

Te

]

 (3.18)

with

n0(k) =

[
exp

(
k2 − γ

Te

)
+ 1

]−1

Te =
T

TF

P± = u ± z

γ = αTe (3.19)

and α is determined from
F1/2(α) =

2
3
T−3/2

e , (3.20)

where Fn(α) denotes the Fermi function. The coefficients an and bn are given by

an = ±1
2
{γ + [γ2 + (2n + 1)2π2T 2

e ]1/2}1/2

and (3.21)

bn = ±1
2
{γ + [γ2 + (2n + 1)2π2T 2

e ]1/2}1/2

It is important to note that with Eq. (3.17) and (3.18), one can recover two well-known results in
the low- and high-temperature limits [31].

Direct application of the RPA stopping number to large scale stopping power calculations
is a formidable task since f1 is a very slowly converging quantity. We have chosen an interpolation
formula of L(T, V ) which bridges the accurate asymptotic expression of Eq. (3.16) in both the small
and large projectile velocity limits [31]:

L(V, Te) =




L1 =
(

V
VF

)3
C(χ2, α) 1

1+GV 2 V ≤ Vint

L2 = ln
(

2mV 2

tωp

)
− 〈V 2

e 〉
V 2 − 〈V 4

e 〉
2V 4 V ≥ Vint

(3.22)

where 〈
V 2n

e

V 2
F

〉
=

T n
e Fn+1/2(α)
F1/2(α)

(3.23)
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C(χ2, α) =
∫ ∞

0

dz z3

(z2 + χ2
∫
1 (z, 0))2

[
1 + exp

(
z2

Te
− α

)] (3.24)

and G is fixed by L1(Vint) = L2(Vint). Detailed numerical calculations have shown that the relative
error of this interpolation formula is smaller than a few percent at any temperature.

In order to demonstrate the sensitivty of stopping number on temperature, we have
calculated RPA stopping numbers for ions of various energies stopped in a uniform electron gas
with density of 1023 cm−3. The calculated results are shown in Fig. 3.6. We see that for slow ions,
the stopping number is very sensitive to the temperature, while for fast ions the temperature effect
is negligible.

3.5. Numerical Results

The stopping of protons on cold aluminum has been well-studied. We begin by studying
the case of a monoenergetic beam of protons incident on an aluminum target so that we can
assess the influence of the charge density distribution represented by the muffin-tin atomic model
on stopping power. Figure 3.7 shows the calculated proton stopping powers in neutral aluminum
as compared to experimental data. Calculated results are from models of isolated atom HFS
electron distributions and muffin-tin electron distributions. It can be seen that while in the high-
energy regime both atomic models give good agreement with the experimental data, the low-energy
stopping power is over-predicted for the isolated atom model. It is known that low-energy ions and
high-energy ions are mainly stopped by two different parts of electrons of the target atom. Most
of the energy from low-energy ions is lost to outer-shell electrons, while the inner-shell electrons
play a major role in stopping high energy ions. As mentioned above, while outer-shell electrons are
strongly affected by the surrounding environment, the inner-shell electron distribution is relatively
stable. Significant differences occur in the spatial variation of the muffin-tin electron densities and
isolated atom HFS electron densities away from the interior of the target atom due to solid-state
bonding effects. For inner-shell electrons, especially for K-shell electrons, the density distributions
of the two models are almost identical. The good overall agreement of the calculated stopping power
with the experimental data demonstrates that the electron density distribution of the muffin-tin
atomic model is quite accurate for both outer and inner shell electrons of an atom in a solid.

In Figure 3.8 the calculated proton stopping power on a cold gold target with two different
atomic electron densities is shown together with experimental data [35]. It is seen that for this
high-Z target, the calculated stopping power with the muffin-tin electron density shows good overall
agreement with the experimental data.

Finally, we come to the main point of this work: the study of the ion stopping
characteristics of hot targets using a self-consistent treatment for both bound and free electrons.
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Figure 3.6. Variation in RPA stopping number with temperature for selected projectile energies.

50



Figure 3.7. Comparison of proton stopping power in neutral aluminum as a function of energy.
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Figure 3.8. Comparison of proton stopping power in neutral gold as a function of energy.
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Figure 3.9. Stopping range of 1 MeV protons in gold as a function of ionization state of the target.
Three different calculation results are shown.
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Figure 3.10. Stopping range of 2 MeV protons in gold as a function of ionization state of the target.
Three different calculation results are shown.
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Figure 3.11. Stopping range of 4 MeV protons in gold as a function of ionization state of the target.
Three different calculation results are shown.
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Figure 3.12. Stopping range of 10 MeV protons in gold as a function of ionization state of the
target. Three different calculation results are shown.
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In this regard, we have calculated the proton range in a hot gold target with the model discussed
in previous sections and made comparisons with the results of the Generalized Oscillator Strength
(GOS) model [36] and of the scaled-Bethe model [22]. Figures 3.9–3.12 show calculated results for
the stopping range in gold with ionization for protons of various energies. Results of this work,
GOS results, and those using the scaled-Bethe model are shown. There are two points of interest
in this comparison. First, the range is predicted to decrease more slowly with ionization for GOS
results. Our results lie somewhere between GOS results and scaled-Bethe results. Secondly, our
results show a smooth decrease with ionization in all the cases, while the GOS model predicts that
the range for high-energy projectiles can initially increase with ionization of the atom.

It has been argued [22] that such an initial range lengthening characteristic in high-Z
targets can be interpreted in terms of the difference in the interaction velocities of the target
electrons when they are in their bound and free states. It should be noted that the key point of this
interpretation is that there is a sharp cut between the bound and free electrons. The characteristic
velocity of a bound electron is given by the local Fermi velocity and the characteristic velocity
of a free electron is the thermal velocity. However, this is not the case in reality. On the other
hand, the GOS model neglects the contributions from bound electrons in excited states. These
excited electrons are less bound than those in the subshells of the ground configuration, and their
characteristic velocities should be somewhere between the local Fermi velocity and the thermal
velocity. If the stopping effect from excited electrons is included in a GOS calculation, we expect
that the initial range lengthening features in the GOS results could be removed. This needs to
be verified in future investigations. In our calculations, contributions from electrons in all states
(ground, excited, and continuum states) are essentially taken into account in a self-consistent
manner. This characteristic of the model is reflected is Eq. (3.14). The sum in Eq. (3.14) runs
through the ground state, all excited states, and continuum states. The population of each state
is determined by the Fermi-Dirac distribution function. The differences between our results and
GOS results demostrate that the contributions from electrons in excited states, which can be
interpretated as “quasi-bound” electrons in high density plasmas, is important in stopping power
calculations and must be treated accurately.

3.6. Summary

We have developed a model to study the energy deposition of an ion in a material of
arbitrary composition, density, and temperature. This model includes a reasonably sophisticated
treatment of the electron density distribution of an atom embedded in a hot plasma and a full
Random Phase Approximation stopping number which extrapolates the zero-temperature Lindhard
stopping number to arbitrary temperatures. Therefore, it can accommodate a wide range of
temperatures and densities relevant to ICF plasmas. Comparisons with experimental data indicate
that this model provides quite accurate ion stopping powers in cold materials, including both low-Z
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and high-Z targets. For finite temperature plasmas, the model accounts for the stopping effects due
to electrons in ground states, excited states, and continuum states in a self-consistent manner. We
have also compared our calculated results of proton ranges in gold plasmas with those from a GOS
model and a scaled-Bethe model. Our results lie between the results of these two different models.
Unlike the GOS results, no initial range lengthening feature is seen in our calculated results. We
conclude that this difference could be caused by the different treatments of less bound electrons in
excited states.

It is also worth pointing out that this model is developed in the framework of first Born
approximation for the projectile. For low-energy heavy ions, the first Born approximation is no
longer appropriate and higher-order Born corrections should be included [31]. This can be done by
directly including the Barkas term [37] and Bloch term [38] into our model. We expect to further
develop the model in this direction in the future.
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ABSTRACT 

Time-Dependent Collisional-Radiative 
Modeling for Analyzing Spectra Obtained 
in Light Ion Fusion Experiments. 

H. K. CHUNG, J. J. MACFARLANE, G. A. MOSES, 
AND P. WANG, Fusion Technology Institute, 

University of Wisconsin 

We present results from time-dependent 
collisional-radiative calculations to 
investigate the properties of moderate- 
density plasmas in light ion fusion 
experiments at Sandia National 
Laboratories. 
Our models will be applied to studies of 
anode plasmas and ion beam transport 
within a neutralizing gas. In both cases, 
electron densities are 1016- 1018 cm-3 
while experimental time scales are 10-9- 
10-8 sec. In our analysis, atomic level 
populations are obtained from the 
solution of multilevel time-dependent 
atomic rate equations. 
We will compare our preliminary 
results with experimental spectra. 
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CODE DESCRIPTION 

ne Te Fixed 

Read Atomic Data File 
I 

Calculate Transition Rates 

Solve Time-Dependent Atomic Rate Equations 
Obtain Populations of Atomic Levels 

Compute Line Intensity Ratios 

Compare With Experiment Data 
I 
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ATOMIC DATA DESCRIPTION 

Atomic data is prepared by Wang Ping 
in Univertisty of Wisconsin-Madison. 

Energy levels and Oscillator Strengths 
are calculated using a configuration 
interaction (CI) model with relativistic 
Hartree-Fock Wave Functions 

Photoionization cross sections are 
calculated for all subshells of each 
electronic configuration using a 
single-particle approximation with 
Hartree-Fock potential. 

Electron collision data is computed 
using a combination of distorted wave, 
Coulomb-Born, and semi-empirical 
methods. 



ANALYSIS 

If  Source Rate is linear, that is,at the 
Population Ratio between two arbitrary 
levels is independent of a, from the Rate 
Equation. 

dn 1 

dt 
dn2 
dt 

- -  - at - alnl + a2n2 

- blnl - b2n2 -- 

Divide it by , 

d h  
dt 

e u -- - t - alnl + a2n2 

-- dgz - blGl - b2&2 
dt  

Then the Rate Equation is independent of Q, 

Therefore the Population Ratios remain 
the same regardless of a. Population 
Ratios are used for determining plasma 
conditions. 
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Schematic Illustration of the 
Transitions in a 3-Level Atom 

level 3 

level 2 - 

Cl2 

level 1 - 

c21 
4: 

421 

C,, --> collisional excitation (i<j) or deexcitation (bj) 

A, --> spontaneous emission 
Bij --> photoexcitation (k j )  or stimulated emission (bj )  

yij 
ail --> radiative recombination 

aDR --> dielectronic recombination 

--> collisional ionization (iej) or recombination (b j )  
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Fundamentals 
I Rate Equations: (L*= number of atomic levels) b 

The rp,jl consist of collisionat and radiative term: 
I Radiative rate coefficient: 

I Transport equation: b 



PROBLEM DESCRIPTION 

1. Atomic level populations are obtained 
by solving. multi-level time-dependant 
atomic rate equations. 

2. A total of 170 atomic levels are 
considered for 01 through OVI. 

3. Initially, all atoms are assumed at the 
ground state of neutral oxygen. Cold 
Oxygen(O1) is continuously injected 
into the system; the source rate is 
assumed to increase linearly with 
time. 

4. Assume that ne, Te are fixed. 

5. Assume that the plasma is optically 
thin. 

included later. 
Photoexcitation effects to be 

6. Calculated line intensities for 0111 - 
OV are compared with experiment. 
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EXPERIMENTAL DATA 
DESCRIPTION 

This experiment uses VUV spectra to 
diagnose the anode plasma 

Oxy en emission line intensities from 
580 x to 63OA have been measured. 

Detected lines: 

Line ID Ion Wave length 

Line intensity ratios are used to 
determine plasma conditions. 
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SUMMARY and FUTURE WORK 

1. We are using a time-dependent 
collisional-radiative model to analyze 
VUV spectra obtained from anode 
plasmas. 

2, Preliminary analysis of Oxygen lines 
in the SABRE experiments suggest; 

ne - 1017 cm-3 
Te - 20 eV 

3. Future calculation will include 
effects of resonant self-absorption on 
both the atomic level populations and 
spectra. 

4. We also intend to apply this model to 
analyze visible and UV spectra 
obtained from the PBFA-I1 Argon gas 
cell to help constrain models of ion 
beam transport physics. 
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Appendix B

Kα Spectral Diagnostics for Mg and Al Plasmas

Irradiated by Intense Li Beams

In this appendix, we describe Kα spectral calculations for Mg–Al foils heated with intense
Li beams. This work was presented at the 10th International Conference on High Power Particle
Beams at San Diego, CA, in June 1994. The paper contributed to the proceedings of this meeting
is attached.



K, SPECTRAL DIAGNOSTICS FOR Mg AND A1 
PLASMAS IRRADIATED BY INTENSE Li BEAMS 

J. J. MacFarlane and P. W a g  
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1500 Johnson Drive 
Madison, WI 53706 

J. E. Bailey, T. A. Mehlhorn, and R. J. Dukart 
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Abstract 

I{, spectroscopy can be a valuable diagnostic method for determining plasma 
conditions in ion beam-heated targets. In intense light ion beam experiments, 
K.. emission lines can be observed as 2p  electrons drop down to fill 1s vacancies 
created b y  beam-impact ionization. In this paper, we present results from 
collisional-radiative equilibrium (CRE) calculations for A1 and Mg target tracer 
layers being irradiated b y  an intense Li beam. Presently, 9 MeV Li b e a m  with 
power densities of 1-2 TW/cm2 can be generated in Particle Beam Fusion 
Accelerator- II (PBFA-II) experiments at Sandia National Laboratories. It is 
shown that both emission and absorption I{, spectra show good sensitivity to 
temperature and density for the range of plasma conditions typically achieved 
in present PBFA-II experiments. 

I. Introduction 

K, satellite spectroscopy has been 
shown to be a valuable technique in 
determining plasma conditions in high 
energy density plasma experiments [l-71. 
K, lines result from electronic 2 p  * 1s 
transitions. Thus, in intense light ion 
beam experiments emission lines can be 
produced as 2p electrons drop down to 
fill 1s vacancies created by the ion beam. 
K, absorption lines can be seen in the 
presence of an x-ray backlighter when the 
target ions have at least one vacancy in 

the 2 p  subshell. Bailey et al. [2] reported 
the first spectroscopic measurements of K, 
x-ray satellites in an intense proton beam 
experiment. K, emission spectra have also 
recently been measured in intense Li-beam 
experiments on PBFA-I1 [8]. 

The purpose of this paper is to show 
how K, satellite spectroscopy can be used to 
diagnose conditions in target plasmas heated 
by intense Li beams. To do this, we have per- 
formed a series of collisional-radiative equi- 
librium (CRE) calculations to generate K, 
emission and absorption spectra for Mg and 
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A1 plasmas. In previous light ion beam ex- 
periments, only K, satellite emission spectra 
from single-component tracers (i.e., Al) have 
been used for diagnosing plasma conditions 
[2,5,8-lo]. However, it is expected that mul- 
ticomponent tracers will be utilized in up- 
coming experiments to provide additional in- 
formation for constraining the plasma tem- 
perature and density. This paper presents 
our initial results for Mg/Al tracers. 

II. Theoretical Models 

Next, we briefly describe the major 
features of our CRE and atomic physics 
models. Additional details can be found else- 
where [5,9-111. Atomic level populations are 
determined by solving multilevel statistical 
equilibrium equations self-consistently with 
the radiation field and ion beam properties. 
Our atomic models for intermediate-2 tracer 
elements (here, Mg and Al) typically con- 
sist of - lo3 energy levels distributed over 
all ionization stages. Roughly 60% of these 
are autoionization states with K-shell vacan- 
cies. Atomic structure and radiative data are 
computed using a configuration interaction 
(CI) model with Hartree-Fock wavefunctions. 
Ion beam-impact ionization is included in 
the statistical equilibrium equations, includ- 
ing multiple ionization transitions (i.e., the 
simultaneous ejection of a K-shell and one 
or more L-shell electrons). Ion-impact ion- 
ization cross sections are computed using a 
plane-wave Born approximation model with 
corrections for Coulomb-deflection, binding 
energy, and relativistic effects. Multiple ion- 
ization cross sections are then obtained using 
an independent event binomial distribution 
model [ll]. Auger rates and fluorescence 
yields are calculated for each autoionizing 
level using a LS coupling formalism with 
Hart ree-Fock wavefunc t ions. Calculated emis- 
sion and absorption spectra include contri- 
butions from bound-bound, bound-free, and 
freefree transitions. In the calculations 

described below, radiation is transported us- 
ing an escape probability model. Resonant 
self-absorption effects are included in com- 
puting both the photoexcitation rates and 
the emergent spectra. Line profiles include 
the effects of natural, Doppler, Auger, and 
Stark broadening. 

111. Results 

A series of calculations were performed 
independetly for thin, planar Mg and A1 trac- 
ers of uniform temperature and density. Tem- 
peratures were varied between 30 and 50 eV. 
In all cases the tracer density was n = 
nsohd and the thickness was 200 pm, which 
corresponds to a 2000 A foil which has ex- 
panded by a factor of lo3. The ion beam was 
assumed to be composed of L P 3  with an en- 
ergy of 9 MeV per ion. All calculated spec- 
tra include instrumental broadening, where 
a resolution of A/AA = 1500 was assumed. 

Calculated emission and absorption 
spectra for K, satellite spectral region of 
Mg are shown in Fig. 1. The absorption 
spectra (shown in lower panels) probe the 
lower state populations of the K, bound- 
bound transitions, and therefore provide a 
direct measure of the ionization distribution. 
For instance, B-like and Belike Mg are the 
dominant ionization stages at T = 40 eV, 
while Li-like and Be-like Mg are prevalent 
at T = 50 eV. K, satellite emission spectra 
(upper panels) reflect the populations of the 
upper levels of the K, transitions (i.e., the 
autoionizing levels), which are populated by 
ion beam-impact ionization. Because of this, 
lines from one to two ionization stages higher 
are seen in emission. For example, the He, 
line (ls2p 'P 3 ls2 '5') and Li-like satellites 
are strongest in emission at T = 40 eV. 

Additional information about plasma 
conditions can be obtained by performing 
experiments with multi-component tracers. 
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Fig. 1. Calculated Mg K, emission (top) and absorption (bottom) spectra at T = 30,40, and 
50 eV. In each case, n = n,,Gd and L = 200pm. The satellite ionization stages are shown with 
the T = 40 eV absorption spectrum. Note the larger scale in the T = 50 eV emission plot due to 
the strong He, line at 9.168 A. 

Figure 2 shows the K, emission spectrum 
calculated for A1 at T = 40 eV, along with 
the Kp absorption spectrum (involving 1s -+ 
3p transitions) for Mg at T = 50 eV. Here, 
we examine whether K, emission from one 
of the tracers can be absorbed by the other. 
Note that in several instances the KD lines of 
Mg are capable of absorbing K, line emission 
from Al. In particular the Mg Hep line at 
X = 7.850 8, lies directly between the two 
strongest Li-like A1 K, emission features. 
Also it is seen that Li-like Mg KP satellites 
between 8.0 and 8.1 8, can absorb line 
radiation from the B-like A1 K, satellites. 
The overlap of part of the A1 K, spectrum 
with the Mg KO satellites, however, need 
not necessarily lead to significant problems 
in analyzing the spectra. This is because 
the K, satellite emission from the highest 
ionization stages (He-, Li-, and perhaps Be- 

like) will most likely be utilized to determine 
the peak temperatures obtained in light 
ion beam experiments, in which case only 
the Mg Hep line is capable of producing 
significant absorption. 

Our results therefore indicate that K, 
satellite emission spectra obtained from two- 
component Mg/A1 tracers should provide 
enough information to accurately determine 
target plasma temperatures in the 30 eV 
to 50 eV range. New data from Mg/Al 
tracers will be obtained in upcoming PBFA- 
I1 Li beam experiments. Similar data will 
be obtained from NaF tracers in proton 
beam experiments at the Karlsruhe Light 
Ion Facility (KALIF) in Germany [12]. 
We also expect to utilize line intensity 
ratios from the He-, Li-, and Be-like K, 
satellites to determine plasma temperatures 
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Fig. 2. Calculated A1 K, satellite emission 
spectrum at T = 40 eV and Mg KO absorption 
spectrum at T = 50 ev. In each case, n = 
10-3n,,fid and L = 200pm. Note that at 
several wavelengths A1 K, emission lines can 
potentially be absorbed by Mg KO lines. 

and densities. This work will be described 
in detail elsewhere [13]. 
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