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ABSTRACT

A new numerical method using generalized eigen-
vector decomposition for the solution of pulsed activa-
tion is described and tested. This method allows for
the treatment of multiple occurences of isotopes in
the decay scheme including the treatment of an arbi-
trary number of loops. Preliminary comparisons with
existing activation codes show good agreement and
confirm that the method produces accurate results.

I. BACKGROUND

The problem of determining the neutron activa-
tion in the first wall, blanket and shield of a fusion
reactor vessel can be an intricate one. In even the sim-
plest case, a large system of linear first-order ordinary
differential equations will result, becoming more com-
plicated with improved libraries and different neutron
flux histories. Perhaps the most interesting compli-
cation is that of a pulsed or intermittent operation
mode. GERAPH [Generalized Eigenvector Radioac-
tivity Analysis for Pulsed Histories] is a new code that
calculates the activation levels in such cases.

When a reactor has a pulsed flux history, decay
of radioactive isotopes competes with neutron trans-
mutation during the high flux periods while only de-
cay occurs during the zero flux dwell periods. Two
steady-state approximations that can be used to cal-
culate induced radioactivity conserve fluence, but one
conserves the flux level (generally used in magnetic
fusion analysis) while the other conserves reactor life-
time (generally used in inertial fusion analysis). If
we consider, for example, the first method, the ap-
proximation is valid for short lived radioactive iso-
topes; during each pulse, they reach secular equilib-

rium values and during each dwell time, they decay to
nothing. For a similar reason, long-lived isotopes are
not greatly affected by intermittent operation; during
each pulse, they continue to build towards an equi-
librium level, and during each dwell period there is
little effect on their level. For this reason, the in-
duced radioactivity due to these isotopes can be ac-
curately calculated by using a steady-state approxi-
mation which conserves fluence and flux. However,
for medium lived radioisotopes, those with a half-life
of the same order as the dwell time, the effect is signif-
icant. They reach some appreciable level during the
pulse and decay measurably during the dwell time.
Sisolak, et al.,1 showed that the difference between
a pulsed solution and both steady-state approxima-
tions can be quite severe. The first method generally
results in an overestimation of radiaoctivity while the
second underestimates.

II. HISTORY

Many approaches can be used to perform this “ac-
curate” pulsed solution, but traditionally, three have
seen widespread use. The most straightforward is a
method which breaks the decay and transmutation
scheme into linear chains and solves the system using
the Bateman equation.2 Such solution schemes allow
matrix type linear solutions for each pulse which can
then be raised to a power to represent the many dif-
ferent pulses.3 The result is a fast, analytically exact
solution which is accurate and dependable for many
systems, but has problems when the decay and trans-
mutation scheme contains loops. Loops occur when
reactions such as:

A
(n,p)−→ B

β−
−→ A or C

(n,γ)−→ D
(n,2n)−→ C

or their more complex equivalents appear in the re-



action path. The analytical solution analogous to the
Bateman equation for the general “loop” case is dif-
ficult to formulate and implement.

The two other methods rely on using a discrete
time solution to the set of differential equations. Stan-
dard ODE solvers such as derivatives of the GEAR
and Runge-Kutta methods are implemented by sep-
arating the complete time history into small incre-
ments of time and solving the system of equations on
each time interval, using the results of the previous
interval as the initial conditions of the next. These
methods can handle loops exactly and can produce
very accurate results, but when the history becomes
long and intricate, these methods take a prohibitively
long time to reach a solution.

The other discrete time-step method, known as
the Matrix Exponential Method (MEM), takes note
of the fact that the solution to a system of equations
�̇N = A · �N is �N(t) = eA·t · �No. The solution is ob-
tained by approximating the matrix exponential with
its series expansion over a time step ∆t. For the series
expansion to be accurate, small time steps or many
terms are required, both resulting in many matrix
multiplications. This solution suffers from the same
run-time problems as the ODE solvers and from ac-
curacy problems related to the finite approximation
to the infinite exponential series. The new method
examined here hopes to eliminate all these problems
by combining the speed of a matrix solution with the
accuracy of a solution which allows for loops.

Another basic method to solve the matrix expo-
nential is to use a matrix decomposition, an example
of which is eigenvector decomposition. If P is the
matrix whose columns are the eigenvectors of A and
Λ is the diagonal matrix with the eigenvalues of A as
its elements,

A = P · Λ · P−1

.̇ . eA·t = I + At +
A2t2

2!
+ . . .

= P (I + Λt + Λ2 t2

2!
+ . . .)P−1

= P · eΛ·t · P−1 .

This particular decomposition is plagued by the prob-
lem of loops in the reaction tree since loops result in
a defective matrix, A. There are methods, such as
Schur decomposition,4 that overcome this problem.

Braun,5 Boyce and DiPrima,6 and Redheffer7 all
provide matrix method solutions to this problem de-
signed specifically for the solution of a set of linear

ODE’s. The latter results in the necessity to solve
the system D · �M = �C where not only is D de-
fective, but �M and �C are vectors of matrices. The
former two methods are similar in their outcome and
resemble a Schur decomposition in their final formula-
tion, but approach the problem from different angles.
The method implemented here is a variation on that
presented in Braun.5

III. CODE DESIGN

There are three significant areas in which the
methodology of this approach is different from pre-
vious implementations: code design, problem un-
derstanding and completeness, and mathematical
method. In addition, like other codes, this one sup-
ports multidimensional inhomogenous systems in a
number of different geometries, relying on flux in-
formation generated by currently established neutron
transport codes.

Unlike most engineering codes in the past, this
one was implemented using C++, allowing interest-
ing philosophies for both data structure and software
design. The main impetus for this decision was the
desire to take advantage of dynamic memory alloca-
tion with complex data structures, resulting in a sys-
tem of code that is tailored to the problem and allows
complex relationships between data to be handled
with simplicity. It is this data structure philosophy
that permits the straightforward use of the matrix de-
composition methods without the restrictions of lin-
ear chains, but rather, with the power of n-ary tree
structures. The matrix mathematics can also be opti-
mized to take advantage of the specific characteristics
of the solution methodology, such as sparse, lower-
triangular matrices. Hopefully, this object-oriented
methodology will result in a more easily maintainable
and expandable code!

The data structure that is implemented in the
code uses an n-ary tree (see Figure 1) for which
nomenclature is important. A tree is made up of
nodes and branches. In Figure 1, the nodes are repre-
sented by the letters of the alphabet, A through J and
L, while the branches are the arrows between them.
In addition, one often refers to the children of a node,
i, which are all those nodes below i in the tree but
connected to it by branches. Similarly, a descendant
of node i is any node whose production can be traced
down branches from node i. The generations are enu-
merated by the rank of the tree. Finally, if a node has
no children, it can also be refered to as a leaf. Thus,
the tree in Figure 1 has 22 nodes, 21 branches, and 8



A

B

C D

E

F G H I J

L

B

B

E

B

E

B

D

H I J

D

d 
  =

 3
B

1

2

3

4

5

RANK

0

1

2

3

4

5* *

m    = 5B p   = 2B m    = 3D p   = 1D

Fig. 1. Sample reaction tree.

leaves.

Each initial isotope will have its own tree, and
each node in the tree representing an isotope; how-
ever, there may be many nodes in one tree that all rep-
resent the same isotope but each having different pro-
duction paths (see Figure 1). Some of these multiple
occurrences will be due to production of the isotope
from different sources (B1 vs. B4 in Figure 1), while
others will be due to “straightening” of loops in the re-
action path (B1, B2 and B3 in Figure 1). The result of
having different nodes for the same isotope due to dif-
ferent reaction paths is that the matrix, A, will have
no more than two non-zero elements in each row: a
single production rate (λparent or

∑G
g=1 σr,g,parentφg

where G is the number of neutron energy groups) and
a single destruction rate (λ+

∑G
g=1

∑R
r=1 σr,gφg where

R is the number of neutron interactions for that iso-
tope), making matrix operations very simple and fast.

In implementing a solution to this problem, it was
important to gain a complete understanding of the
problem, the range of possible input parameters, and
the limiting intricacies of the solution methodology,
so that the code can be applied to the widest variety
of cases without an appreciable loss of accuracy or
increase in run-time. While gaining an understand-
ing of the problem, a number of minor complications
arose. The data libraries being used to generate the
isotope tree have been updated to include up to 55 dif-
ferent neutron interactions, resulting in prohibitively
large problems. A set of appropriate truncation rules
had to be created to keep the problem within a rea-
sonable size and complexity without losing accuracy
of the solution. A point exists after which increas-
ing the problem size has negligible effect on the so-
lution accuracy. A simple maximum tree depth cri-

terion is available to artificially limit the size of the
problem; however, the standard method of truncation
relies on doing an approximate calculation of the rel-
ative production level of the isotope in question. For
each node, a conservative approximation of the pro-
duction of that isotope is performed and compared to
a user-defined tolerance. If this comparison indicates
that this isotope should be a point of truncation, there
will be no isotopes below that rank that are descen-
dants of that node. There may, however, be nodes
lower that this rank in other subtrees of the main
tree. If the optional maximum tree depth is specified
by the user, the relative production level rule is ap-
plied to all isotopes above the maximum depth. In
Figure 1, utilizing the standard truncation method,
isotopes G, L, and I were truncated immediately be-
cause their production rate is too low. On the other
hand, isotope H was expanded once, but on its next
occurrence, it was truncated. Finally, isotopes such
as B and E were expanded many times, even though
they represent loops.

Also, to ensure that the results would include a
wide range of information useful to many, the track-
ing of light ion production (1H, 2H, 3He, . . . ) as by-
products of neutron interactions and decay was in-
corporated. This information is important since tri-
tium can make a major contribution to the induced
radioactivity in a reactor vessel and the light ion pro-
duction has significant effects on its material prop-
erties. Automatic truncation occurs for all light ion
reaction by-products except 3H and 3He, under the
philosophy that allowing the ions to undergo reactions
would cause an increase in problem size not countered
by the corresponding gain in accuracy or information.

The code was designed to encourage use by em-
ploying a descriptive input format and allowing a
broad range of input problems. The input file is fully
commented, which permits the user to have full un-
derstanding of every inputted piece of information.
The support of point, slab, cylindrical, spherical and
toroidal geometries in 0 through 3 dimensions and
the existence of interface programs to allow commu-
nication via existing transport code output make it a
widely useful tool.

IV. SOLUTION METHODOLOGY

This section focuses on the mathematical engine
which forms the basis of the solution. In so doing,
it will be necessary to discuss the data structures or
tree creation methods, but they will not be explained
in detail.



Assuming that a basis, V = {�v0, �v1, . . . , �vn}, for
our problem space has been determined, the solution
would go as:

�̇N = A �N

�No = n0�v0 + n1�v1 + . . . + nk�vk = V �n

.̇ . �n = V −1 �No

�N(t) = eAt �No = eAtV �n

=
k∑

i=0

eλite(A−λiI)t�vi ni . (1)

If we let

qi = e(A−λiI)t (2)

and Q = {q0 · �v0, q1 · �v1, . . . , qk · �vk} then Equation
(1) becomes:

�N(t) =
k∑

i=0

eλitqi�vi ni

= Q · eΛt · �n = Q · eΛt · V −1 · �No (3)

where Λ is a diagonal array with the elements being
the eigenvalues of A.

With careful analysis of this matrix exponential
expansion, comparison to the Schur decomposition
method becomes interesting. If we multiply a vec-
tor, �vi, by the characteristic equation, A − λiI, we
will get a linear combination of the other vectors in
the set V . In fact, it will be a linear combination of
the vectors which correspond to all the occurrences of
isotope i below the occurrence which corresponds to
�vi. Thus, it is possible to perform this successive mul-
tiplication by the characteristic equation and get a set
of vectors W , all of whose members are the general-
ized eigenvectors for λi. When we do this, the final
solution takes the form eAt = WEW−1 where E is a
lower triangular matrix which contains the powers of
t and scalar exponentials of the eigenvalues in the lo-
cations to form the correct sum. If E is interpreted as
the exponential eT t of some lower triangular matrix,
T , this would be identical to a Schur decomposition.
With the implementation in use by GERAPH, how-
ever, the computation of a lower triangular matrix
exponential is avoided, eliminating the complications
of such an approach.8 This can be done for any system
of linear first-order ODE’s which can be represented
in an n-ary tree structure.

The final step, and perhaps the most important,
is to choose a set of basis vectors, V , that allow
for an exact solution of the exponential in Equa-
tion (2). From Braun, we see that for a degenerate

eigenvalue, λi, with multiplicity, mi, although there
may be fewer than mi unique eigenvectors there are
always mi linearly independent vectors that satisfy
(A = λiI)di�x = �0 for some power, di. Of these
vectors, pi (the dimension of the eigenspace) will be
eigenvectors and the others will be linear combina-
tions of the generalized eigenvectors. Thus, if one can
determine di, qi · �vi reduces to:

e(A−λiI)t�vi =
∞∑

j=0

(A − λiI)jtj

j!
· �vi

=
di−1∑

j=0

(A − λiI)jtj

j!
· �vi . (4)

At this stage, it is useful to consider the data
structure and formulation of the problem. The combi-
nation of this exact expansion of the matrix exponen-
tial and the sparse matrices resulting from the data
structure creation provides improvements in speed
and accuracy over other methods that use the se-
ries expansion of the matrix exponential. The reason
that degenerate eigenvalues exist is that certain iso-
topes will exist more than once in the isotope tree.
The number of distinct eigenvectors, pi, can be de-
termined by counting the number of occurrences of
isotope i that have no occurrences of i below them in
the tree. These occurrences of isotope B are marked
with an ‘*’ in Figure 1.

The next interesting result is that di corresponds
exactly to the number of nodes that represent isotope
i, in the linear chain that has the most occurrences of
isotope i. Therefore, by doing a recursive depth first
analysis of the tree, we can obtain all the important
information, such as multiplicity mi, maximum depth
di, and the dimension of the eigenspace pi, giving us
all the necessary components to generate a mathe-
matically exact solution using Equations (3) and (4)
(see Figure 1).

Finally, there is a complication involved when
evaluating eΛt in instances when λit is a large num-
ber. If E = eDt for some diagonal matrix, D, then
E is a diagonal matrix with elements eii = ediit. If
λit is too large (very short half-lives), the exponen-
tial term on that diagonal will be zero, essentially
eliminating the information about that isotope. To
overcome this problem, the solution matrix QeΛtV −1

is evaluated with some time step, ∆t, and this solu-
tion is raised the power t

∆t . Methods which rely on
the identity esA = (esA/m)m can experience serious
problems with roundoff errors in some cases,8 and as
such, new methods are currently being investigated



to circumvent this problem.

V. RESULTS

Results from GERAPH were compared with re-
sults from the analytically verified demonstration
code PULSAR3 using linear chain construction from
DKR-ICF. Five different pulsing histories were used
with two different input elements, manganese and
iron, and in both cases, a number of radioactive iso-
topes were chosen for comparison. The cross-section
and decay data for both codes were extracted from
the USACT939 data library.

Table I shows the irradiation history used for the
verification cases. These histories were chosen as typ-
ical intermittent operation histories for an experimen-
tal magnetic fusion energy reactor, such as ITER. In
particular, cases 2 through 4 represent a 5 day week
with no operation on the weekends. The last case was
chosen because it demonstrates the effects of different
pulsed operation histories more severely.

Table I. Pulsed History Used for Verification
Level 1 Level 2 Level 3

Width Dwell # Dwell # Dwell #
tp ∆t1 n1 ∆t2 n2 ∆t3 n3

1 2300 s 200 s 50960 – – – –
2 2300 s 786 s 140 48 h 364 – –
3 2300 s 786 s 13 13.1 h 5 61.1 h 784
4 2300 s 1 h 13 3.7 h 5 51.7 h 784
5 600 s 360 s 50960 – – – –

The truncation routine used a reference operation
time which was equal to the sum of the irradiation
times for the entire operation history (i.e.: for case
1, tref = 2300s × 50960 = 1.17208 × 108s), and a
truncation tolerance of 4× 10−7. This resulted in the
inclusion of all the children of 55Mn and the expansion
to the third rank of one of those children, resulting
in 32 children with 29 leaves. In the iron case, the 4
naturally occurring isotopes were the roots for 4 trees
with 48, 31, 31, and 48 nodes and 45, 28, 29, and 45
leaves, respectively.

The results for the manganese and iron case, are
shown in Table II. Four isotopes were chosen in each
case as major contributors to the final radioactivity.

The difference between these values is most prob-
ably due to the fact that the input for PULSAR is
derived from the output of DKR, which has been
rounded off for output. This round-off error of the
input results in the difference of less than 1% for all
cases. In addition, the possible existence of loops
could cause a difference, since the DKR/PULSAR
combination uses the Bateman solution and is unable

Table II. Activity at Shutdown [Bq]
Parent: Mn

55Cr, t1/2 = 3.55m
Case GERAPH PULSAR % Difference

1 9.681e6 9.617e6 0.67
2 9.679e6 9.615e6 0.67
3 9.679e6 9.615e6 0.67
4 9.679e6 9.615e6 0.67
5 8.715e6 8.656e6 0.68

54Mn, t1/2 = 312.5d
Case GERAPH PULSAR % Difference

1 7.155e7 7.106e7 0.69
2 4.303e7 4.274e7 0.68
3 2.002e7 1.988e7 0.70
4 2.002e7 1.989e7 0.65
5 3.615e7 3.590e7 0.70

56Mn, t1/2 = 2.58h
Case GERAPH PULSAR % Difference

1 2.165e10 2.149e10 0.75
2 1.791e10 1.778e10 0.73
3 1.701e10 1.692e10 0.5
4 1.033e10 1.025e10 0.8
5 1.480e10 1.469e10 0.75

55Fe, t1/2 = 2.7y
Case GERAPH PULSAR % Difference

1 4.893e2 4.858e2 0.72
2 4.025e2 3.996e2 0.72
3 2.612e2 2.594e2 0.69
4 2.613e2 2.595e2 0.69
5 4.012e1 3.984e1 0.70

Parent: Fe
51Cr, t1/2 = 27.7d

Case GERAPH PULSAR % Difference
1 7.691e5 7.700e5 0.1
2 4.567e5 4.571e5 0.09
3 2.130e5 2.133e5 0.1
4 2.121e5 2.123e5 0.09
5 5.225e5 5.231e5 0.1

56Mn, t1/2 = 2.58h
Case GERAPH PULSAR % Difference

1 1.510e7 1.512e7 0.1
2 1.249e7 1.251e7 0.2
3 1.189e7 1.191e7 0.2
4 7.204e6 7.217e6 0.18
5 1.032e7 1.033e7 0.1

55Fe, t1/2 = 2.7y
Case GERAPH PULSAR % Difference

1 1.611e8 1.611e8 0.00
2 1.208e8 1.209e8 0.08
3 6.603e7 6.605e7 0.03
4 6.605e7 6.608e7 0.05
5 5.554e7 5.553e7 0.02

59Fe, t1/2 = 44.6d
Case GERAPH PULSAR % Difference

1 6.093e6 6.081e6 0.2
2 3.585e6 3.578e6 0.2
3 1.668e6 1.665e6 0.2
4 1.664e6 1.661e6 0.2
5 4.139e6 4.130e6 0.2

to handle loops correctly. Given this, the agreement
between GERAPH and PULSAR is sufficient to verify
the generalized eigenvector decomposition method.

To show the importance of the truncation toler-
ance, three additional manganese cases were run to
compare to case 1 in Table II with truncation toler-
ances of 4 × 10−5, 4 × 10−9, and 4 × 10−11. For the
case when the tolerance was 4×10−5, the reaction tree
was truncated before the inclusion of 55Fe, but in all
cases the activities were unaffected by the change in



truncation tolerance because the additional contribu-
tions to the activities by isotopes occurring later in
the tree are negligibly small. However, all cases with
lower tolerance had significant increases in problem
size, up to 171 nodes and 154 leaves, resulting in a
longer run-time. This validates the earlier claim that
appropriate truncation of the reaction tree does not
jeopardize the results.

VI. SUMMARY

GERAPH has been verified against a previously
verified code, PULSAR, which uses a different numer-
ical method. The results for the test cases which were
conducted show agreement within 0.75%. In addition
the demonstration of the importance of the trunca-
tion tolerance showed that if set too high, information
will be lost, and if set too low, no new information is
gained.

Two goals were specified for this new code: speed
and accuracy. Unfortunately, no comparison exists
for both of these criteria. DKR-ICF is presently un-
der modification so that it will be able to be used
as a comparison for multi-level pulsed histories, but
currently does not handle loops exactly or account for
the feedback of loops. Currently, GERAPH’s runtime
is on the order of DKR-ICF (within 10%), but that
is prior to generating the pulsed solution with PUL-
SAR, and thus the goal of increased speed has been
realized for these sample problems.

Future work will consist of verification of the loop
results against analytical solutions and the conver-
sion of GERAPH from a demonstration code to a
releasable product. Some of this work will include
modification of the mathematical engine to optimize
the speed and remove the use of the scaling and ex-
ponentiation of the matrices.

VII. REFERENCES

1. J.E. Sisolak, S.E. Spangler, and D.L. Henderson,
“Pulsed/Intermittent Activation in Fusion En-
ergy Reactor Systems,” Fusion Tech. 21, 2145
(1992).

2. D.L. Henderson and O. Yasar, “DKRICF: A
Radioactivity and Dose Rate Calculation Code
Package,” UWFDM-714, University of Wiscon-
sin Fusion Technology Institute, Vol. 1, Madison,
Wisconsin (1986).

3. S.E. Spangler, J.E. Sisolak, and D.L. Hender-
son, “Calculational Models for the Treatment

of Pulsed/Intermittent Activation Within Fusion
Energy Devices” Fusion Engineering & Design,
22, 349 (July 1993).

4. B. Noble and J.W. Daniel, Applied Linear Al-
gebra, pp. 326-327, Prentice-Hall, Englewood
Cliffs, New Jersey (1988).

5. M. Braun. Differential Equations and Their Ap-
plications, pp. 463ff, Springer-Verlag, New York,
New York (1975).

6. W.E. Boyce and R.C. DiPrima, Elementary Dif-
ferential Equations and Boundary Value Prob-
lems, 3rd ed., pp. 317ff, John Wiley & Sons, New
York, New York (1977).

7. R. Redheffer, Differential Equations: Theory
and Applications, pp. 388ff, Jones and Bartlett,
Boston (1991).

8. C. Moler and C. Van Loan, “Nineteen Dubious
Ways to Compute the Exponential of a Matrix,”
SIAM Review, 20, 801 (Oct. 1978).

9. F. Mann, HEDL, personal communications.




