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Chapter 1

Introduction

The vibration characteristics of cylindrical shells have been of great interest for
many. years due to their wide range of applications. Hundreds of papers have been
written on the subject, with the earliest dating to the late 1880's. The majority of
these papers have dealt with a few select sets of boundary conditions. In many
design applications, the vibration characteristics of machines and components are of
interest primarily for removing unwanted noise or harmful resonances. This type of
work is often done after the initial design has been completed. However, in some
applications the structural dynamics play a crucial role in the initial design, and

therefore must be thoroughly understood.

1.1 Inertial Confinement Fusion Application

Inertial Confinement Fusion (ICF) reaction chambers provide a unique
application of cylindrical shells which demands a thorough knowledge of their
vibration characteristics. In ICF, small fuel pellets (typically composed of deuterium
and tritium inside a spherical shell) are exposed to a sudden blast of energy in the
form of highly energized particles from lasers, ion beams, or x-rays. The energy
from the beams is transferred into kinetic energy as the spherical shell implodes.
When the imploding material arrives in the center, it is highly compressed and
heated. When the fuel reaches a temperature of 50,000,000 C° and a density 1000
times solid density, the deuterium and tritium fuse to form helium. This reaction
releases a huge amount of energy in the form of a small explosion of neutrons, x-

rays, and ions over a time period of only a few nanoseconds [1.1]. These particles



create what amounts to a large pressure blast load on the inside of the target

chamber.

When a structure is loaded impulsively, it absorbs the energy from the impulse
and dissipates it by vibrating at its natural frequencies. The stresses in the structure
are often higher during the resulting free vibration than immediately following the
impulse. An additional complication results from the rapid heating of the gases
within the chamber, which produces a longer duration transient pressure load starting
soon after the initial blast. As a result, the vibration characteristics of the chamber
are of critical importance in determining a feasible design. The purpose of this
research was to develop finite element models to simulate the dynamic response of
cylindrical chambers to these blast loadings. Once the finite element models were
verified, they could be used to determine the chamber parameters (such as diameter,
length, thickness, etc.) required to withstand a particular loading. Thus, the actual

chamber design could be developed via the numerical simulations.

Analytical solutions to the problem of cylinder vibrations were sought from the
literature in order to verify the finite element models. Because the pressure blast is
nearly uniform on the inside of the cylinder, the resulting vibrations will be primarily
axisymmetric, or the same all the way around the circumference. During the course
of the research it was found that the existing literature was somewhat lacking in the
area of axisymmetric cylinder vibrations. Some discrepancies between popular
solution methods were found, and unusual mode shapes that had not been previously

published have now been identified.



1.2 Thesis Overview

In this thesis, Chapter 2 is a general review of the literature on cylinder
vibrations. Chapter 3 gives a more in-depth look at the previous work as applied to
the current case, and points out some of the difficulties in finding analytical
solutions. The modes of vibration are described, and the limitations of various shell

theories are discussed.

The finite element modeling is discussed in Chapter 4. The effect of various end
conditions is investigated, and the results are compared to the analytical solutions of
the previous chapter. Unusual behavior in the form of distinctive "superimposed"
mode shapes is presented, and the influence of shell dimensions and supports on
these mode shapes is discussed. An attempt is made to generalize this behavior. An
experimental investigation was undertaken to verify the modes, the results of which

are presented in Chapter 5. Summary and conclusions are given in Chapter 6.

1.3 References

[1.1] Duderstadt, J. J. and Moses, G. A., Inertial Confinement Fusion, Wiley, New
York, NY, 1982.



Chapter 2

Literature Review

The vibratory response of shells to internal blast loading is of critical importance
in the mechanical design of ICF reaction chambers. Spherical shells are usually used
for containing explosions, so research on the use of cylindrical shells for this purpose
is somewhat limited. Because the internal loading is primarily axisymmetric, the
cylinder will respond in a similar fashion. Thus, in this case the axisymmetric

vibrations of cylindrical shells are of interest.

2.1 Previous Cylindrical Target Chamber Analyses

Reaction chambers for ICF applications must contain the blasts from small
thermonuclear ekplosions. A spherical shell is usually desired for containing
explosions as they are the most efficient structurally. However, the benefits of
cylindrical shells for other design considerations (e.g., manufacturability, ease of
access, maintenance, etc.) have led researchers to investigate the use of cylindrical

chambers to contain the explosions.

In the HYLIFE reactor study, a waterfall of liquid lithium protects the chamber
wall from the explosion [2.1]. Some of the lithium is driven into the wall, producing
a pressure pulse lower in magnitude and much longer in duration than the original
explosion. In this analysis, the response of the cylinder is roughly approximated by

applying a dynamic loading factor to the hoop stress of the .cylinder.

In support of the Target Development Facility (TDF) design study, Engelstad and

Lovell [2.2] determined the dynamic response of a cylindrical chamber to perform



lifetime calculations. The mechanical response was based on Donnell's equations of
motion. The solution was obtained by assuming displacements in the form of a
series of combined trigonometric and hyperbolic functions. A frequency equation
yielded the natural frequencies, which were then used to determine the mode shapes.
The dynamic response to a uniform impulse was calculated using modal
superposition. These results were then used to determine the fatigue life of the

chamber under repeated blasts.

This work was refined in studies of the Laboratory Microfusion Facility (LMF)
by Engelstad, Lovell, and Powers [2.3, 2.4]. ICF target chambers often require a
large number of perforations for the ignition beams to pass through. The effect of
these perforations was taken into account using modified material properties as
developed for fission reactor tube sheet design. The equations developed previously
by Lovell were then used to predict the response. More complex load histories
composed of impulse, step, and ramped-step functions were also considered to
account for a dynamic afterpressure following the initial explosion. The resulting
stress histories were again used in fatigue calculations to determine the feasibility of

proposed chamber designs.

2.2 Cylinder Response to Transient Axisymmetric Loads

Apart from the ICF work listed above, only two references were found that dealt
specifically with the response of cylindrical shells to transient axisymmetric loading.
The first is a paper by Wang et al. [2.5] that provides a solution similar to those listed
above [2.2-2.4]. Although it precedes these works by 20 years, they were carried out

independently. The second by Sheng [2.6] breaks the transient response into two



parts: a static portion and a normal mode portion. However, the method used is
computationally intensive and the author gives no examples of the resulting mode
shapes. It also appears that the method is tailored for loadings that have a relatively

long application period, and limitations on the loading period are not mentioned.

2.3 General Cylinder Vibrations

Many investigators (Love, Fliigge, Timoshenko, and others) have developed the
differential equations of motion which describe the behavior of thin shells. Some of
these fundamental works date back to the 1880's. These formulations are well
known and published in many texts, so the literature review here will concentrate on

more recent works applicable to the current situation.

Many of the early authors derived the equations of motion for general cylinder
vibrations, but considered the equations too difficult to solve. Fliigge [2.7]
developed a similar set of the general equations of motion. He was able to determine
the frequency equations for cylinders with simply supported ends by assuming a
trigonometric displacement solution. The roots of this equation gave three different
natural frequencies for every nodal pattern, each of which corresponded to different
amplitude ratios of displacements in the three coordinate directions. Fortunately, the
two sets of higher frequencies were typically an order of magnitude above the
lowest. He also outlined the solution method for other support conditions, but the
method involved the repeated numerical evaluation of an eighth-order determinant,

which was not practical until digital computers came of age.

Armold and Warburton used energy methods to derive the equations of motion

and solved them for simply supported [2.8] and clamped [2.9] boundary conditions.



They identified an unusual behavior of cylinders, in that the ordering of the natural
frequencies does not always correspond to the complexity of the nodal pattern. They

also presented experimental results to verify their analytical work.

Yu [2.10] simplified the Donnell equations for the case where the axial
wavelength was very large compared to the circumferential wavelength. He obtained

the frequency equations for clamped, simply supported, and mixed end conditions.

The solution method introduced by Fliigge for general cylinder vibrations was
carried out by Forsberg using digital computers, and his results were presented in
three parts. In Ref. [2.11] he considered the effect of various boundary conditions on
the flexural vibration characteristics, including frequency, mode shape, and modal
stresses. The effect of various assumptions on the solution was considered in Ref.
[2.12]. In this paper he considered flexural, beam-type, and axisymmetric vibrations.
The effect of end conditions on beam-type and axisymmetric vibrations were

covered in Ref. [2.13].

Working independently of Forsberg, Ludwig and Kreig [2.14] used the same
solution method and obtained similar results for the mode shapes and frequencies.
They considered various mixed end conditions, including numerical results only for
shells with a rigid flange at one or both ends. In spite of the different end conditions,
many of the mode shapes displayed characteristics similar to those noted by

Forsberg.

Smith and Haft [2.15] extended Forsberg's first work to beam-type vibrations. In
Ref. [2.16], Vronay and Smith improved upon Forsberg's solution method by making

it less tedious. The method is still far from easy and requires excessive



computations. However, it still provides the most exact solution of the equations of

motion.

An extensive publication by Liessa [2.17] is a compilation of a wealth of
information about shell vibrations. A large portion considers cylindrical shells, and
compares results from a large number of researchers including many of the works
mentioned here. He showed that most of the various formulations of the general
equations of motion (Love, Fliigge, Timoshenko, and others) are very similar and

yield the same numerical results within engineering accuracy.

A brief note by Goldman [2.18] clarifies the results from Forsberg for the lowest
axisymmetric mode shape of a clamped cylinder, and points out that misconceptions

about this case may arise from available literature.

This thesis attempts to resolve these misconceptions. Also, results are presented
for unusual superimposed mode shapes which differ in appearance from what is
normally expected. The exact solution of the equations of motion used by several
authors as noted above is extremely laborious, so results are presented which

substantiate the use of finite element methods for cylinder vibration analysis.

2.4 References

[2.1] Pitts, J., "A Consistent HYLIFE Wall Design that Withstands Transient
Loading Conditions," Proceedings of the Fourth Topical Meeting on the
Technology of Controlled Fusion, 1980, pp. 1174-1181.

[2.2] Engelstad, R. L. and Lovell, E. G., "Parametric Lifetime Analysis of
Cylindrical Chambers for the Target Development Facility," University of
Wisconsin Fusion Technology Report UWFDM-656, October 1985.
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[2.11]

[2.12]

[2.13]

[2.14]

[2.15]

Engelstad, R. L., Powers, J. P., and Lovell, E. G., "Mechanical Design of the
LMF Target Chamber,” University of Wisconsin Fusion Technology Report
UWFDM-656, October 1985.

Powers, J. P., "Structural and Fatigue Analysis of the Sandia Laboratory
Microfusion Reaction Chamber," M.S. thesis, 1991, University of Wisconsin-
Madison, Madison, WI.

Wang, J. T., Stadler, W., and Lin, C., "The Axisymmetric Response of
Cylindrical and Hemispherical Shells to Time-Dependent Loading," NASA
CR-572, 1966.

Sheng, J., "The Response of a Thin Cylindrical Shell to Transient Surface
Loading," American Institute of Aeronautics and Astronautics Journal, Vol.
3, No. 4, April 1965, pp. 701-709.

Fliigge, W., Stresses in Shells, Springer-Verlag, Berlin, 1960, Chap. 5, pp.
219-233.

Arnold, R. N. and Warburton, G. B., "Flexural Vibrations of the Walls of
Thin Cylindrical Shells Having Freely Supported Ends," Proceedings of the
Royal Society (London), A, Vol. 197, 1949, p. 238-256.

Arnold, R. N. and Warburton, G. B., "Flexural Vibrations of Thin Cylinders,"
Proceedings of the Institution of Mechanical Engineers (London), Vol. 167,
1953, pp. 62-80.

Yu, Y. Y., "Free Vibrations of Thin Cylindrical Shells Having Finite Length
with Freely Supported and Clamped Ends," Journal of Applied Mechanics,
Vol. 23, 1955, pp. 547-552.

Forsberg, K., "Influence of Boundary Conditions on the Modal
Characteristics of Cylindrical Shells," American Institute of Aeronautics and
Astronautics Journal, Vol. 2, No. 12, Dec. 1964, pp. 2150-2167.

Forsberg, K., "A Review of Analytical Methods Used to Determine the
Modal Characteristics of Cylindrical Shells," NASA CR-613, 1965.

Forsberg, K., "Axisymmetric and Beam-Type Vibrations of Thin Cylindrical
Shells," American Institute of Aeronautics and Astronautics Journal, Vol. 7,
No. 2, Feb. 1969, pp. 221-227.

Ludwig, A. and Krieg, R., "An Analytical Quasi-exact Method for
Calculating Eigenvibrations of Thin Circular Cylindrical Shells," Journal of
Sound and Vibration, Vol. 74, No. 2, 1981, pp. 155-174.

Smith, B. L. and Haft, E. E., "Natural Frequencies of Clamped Cylindrical
Shells," American Institute of Aeronautics and Astronautics Journal, Vol. 6,
No. 4, April 1968, pp. 720-721.



10

[2.16] Vronay, D. F. and Smith, B. L., "Free Vibrations of Circular Cylindrical
Shells of Finite Length" American Institute of Aeronautics and Astronautics
Journal, Vol. 8, No. 3, March 1970, pp. 601-603.

[2.17] Leissa, A. W., Vibration of Shells, NASA SP-288, 1973.

[2.18] Goldman, R. L., "Mode Shapes and Frequencies of Clamped-Clamped
Cylindrical Shells," American Institute of Aeronautics and Astronautics
Journal, Vol. 12, No. 12, Dec. 1974, pp. 1755-1756.



11

Chapter 3

Analytical Vibration Characteristics

The analytical solution of cylinder vibrations is extremely difficult and
computationally intensive. In this chapter, results from various authors are compiled

and compared to provide an introduction to the characteristics of vibrating cylinders.

3.1 Equations of Motion

The present research is limited to circﬁlar cylindrical shells, so the cylindrical
coordinate system shown in Fig. 3.1 is used to define the equations of motion. The
axial, circumferential, and radial directions are denoted (respectively) by x, 8, and r,
and the corresponding displacements are u, v, and w. The shell dimensions are given

by the following: & is the thickness, a is the radius, and [ is the length.

X

A

| >
o

— >

Fig. 3.1.  Cylindrical coordinate system and displacement components.
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This analysis follows the common assumptions of linear thin shell theory, i.e.,
the cylinder is assumed to be thin (a/h>10), of constant wall thickness, and made of a
linear, isotropic, homogeneous material. As previously mentioned, there are many
different formulations of the general differential equations of motion for thin shell
vibrations (Love, Fliigge, Timoshenko, and others). If the thin shell criterion is met,
then most of the formulations of the general equations of motion give similar results

[3.1, 3.2]. The equations as developed by Fliigge [3.3] are:

tu +1 v(1+ ) 2u 1+v P i _ 83w+1—vk *w +vﬂ—'y£—=0
B 2 oxd8 o’ 2 x06? ox or’
(3.1a)
1+v 82u+32 1- v(1 3k) v 3-vk ’’w +Qﬁ_72§_22=0
2 Jxd8 992 2 2 K98 26 or*
(3.1b)
P u a3 u 3-v, Fv W
-k + -—k +(1+%
ax3+ n Y202 TV 2 Fadae t et YW
‘92 4 232
+2k—-—+kV w+yr=—-=0 (3.1c)
06?
where
2 paz(l_vz)
=— / 3.1d
Y z (3.1d)
hZ
= 3.1
k 124% (3.1e)
2 2
V2=-‘27+—‘9— (3.1f)
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and E is the elastic modulus of the material, p is the density, v is Poisson's ratio, and
t denotes time. Note that the axial coordinate x has been nondimensionalized by

dividing by the radius.

The complexity of the above equations helps explain why so many different
formulations exist. Many of the terms involve the strain-displacement relationships
and other aspects with little effect on the vibration characteristics. Researchers have
attempted various simplifications in order to solve these equations. Donnell [3.4]
showed that if the radius to thickness ratio is assumed negligible compared to unity,

considerable simplification of the equations results, e.g.,

2, 1_. 32 2 2
ou 1-vou 1+v d  ow_ 20%u_ (3.22)

»Z 2 202 2 o0 ox or?

1+v Pu v 1-vd>v ow ,

+ + +—=y"—=0 3.2b

2 106 968 2 o 98 | o (-20)
ou v *w

—+—+w+kV'w+yY —=0 3.2

Y T TV G.2¢)

While this simplified set of equations can be solved analytically, it is still very
tedious and computationally intensive. However, in formulating analytical vibrations
problems, it is common to neglect the inertia in directions not corresponding to the
primary direction of motion. For the case of a cylinder, the inertia in the axial and
circumferential directions is often neglected, as motion is primarily in the radial
direction. Assumptions such as this greatly simplify Egs. 3.2. Consequently, the

radial displacement component can be readily determined.
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3.2 General Cylinder Vibrations

Before discussing the effect of these simplifications on the analytical solutions,
the modal characteristics of cylindrical shells should be reviewed. The vibrations of

cylindrical shells are typically defined as shown in Fig. 3.2 (from Ref. [3.1]). The

- mode shapes are generally identified by the number of waves (n) around the

circumference and the number of half-waves (m) along the length. This notation is
valid when both ends of the cylinder are prevented from moving radially. When one
or both ends is radially free, the vibration pattern in the axial direction is usually
identified using the number of nodal circles (m”) along the length. It is also common
to classify the mode shapes into three groups: axisymmetric modes (n=0), in which
the deformed shape is the same around the circumference; bending modes (n=1),

which are similar to transverse beam modes; and flexural (n>1) modes.

The modal characteristics of shells are different from typical structures in that the
simplest mode shapes (the ones with the fewest node lines) are not necessarily the
lowest in frequency. This is illustrated by Fig. 3.3, which shows the frequency
spectrum obtained by Forsberg [3.1] from the solution of Eqgs. 3.1. For a given
number of circumferential waves, the frequency increases with an increasing number
of axial half waves (decreasing //ma). The lowest natural frequency will then always
correspond to a mode with m=1. This behavior is typical of vibrating structures.
However, the number of circumferential waves corresponding to the lowest
frequency mode depends on geometrical features of the cylinder, such as the length
to radius ratio, the radius to thickness ratio, and the end conditions. From Fig. 3.3, if
l/a=10, the lowest mode will have m=1 and n=4. However, if l/a=5, the lowest mode

will have m=1 and n=5. Of particular interest is the fact that the axisymmetric
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modes are relatively high in frequency. This is one reason that there has been little
research on axisymmetric cylinder vibrations. High frequency modes require more
energy to excite, so the n=0 modes are not likely to respond unless the excitation is

nearly axisymmetric.

It should be noted that the flexural (n>1) modes are more dependent on a/h than
the others; their modal frequencies tend to increase with increasing thickness. Thus
for a shell with greater thickness, the curves for n>1 in Fig. 3.3 would move upward
relative to the curves for n=0 and n=1. There would then be fewer flexural modes

with frequencies below the lowest axisymmetric modes.

3.3 Axisymmetric Cylinder Vibrations

Since the problem that initiated this research was based on the axisymmetric
blast loading of a cylinder, the initial literature search concentrated on this subject.
Due to the relatively rare circumstances where this type of loading is encountered,
literature on the subject is sparse. Two works on the subject by Powers [3.6] and
Wang [3.7], though separated by 20 years, used the same basic procedure to solve

this problem.

The general equations of motion (Egs. 3.2) are initially simplified by removing
all terms with a circumferential dependence. Since there can be no motion in this
direction, the circumferential inertia term can also be neglected. With this, Eq. 3.2b

drops out entirely and the remaining equations simplify to the following:

02 ow 9?
TR G.39)
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4 2
aW+v@+w+y2§—w= (3.3b)
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Since the in-plane motion of shells is usually much smaller than the out-of-plane
motion, it is often neglected to simplify the analysis. If the longitudinal inertia term
of Eq. 3.2a is neglected, the resulting expression can be integrated once and the
resulting expression for ou/dx substituted into Eq. 3.3b. The result is a fourth order
differential equation given by

d*w

&xA

2 32w

E2

k +1-v)w+y =0 34

This equation is the same as that reported in Refs. [3.6] and [3.7] when
differences in notation are corrected. If clamped boundary conditions (e.g.,

u=w=0w/dx=0) are applied to both ends, the following frequency equation results:

coshA,cosd, —1=0 (3.5)

The frequency equation can be solved for the eigenvalues (;), and the natural

frequencies are then given by

._E 5 s, 1
e ———— 2+ 3.6
W p(lZl(l—vz)' az) -0

The lowest extensional frequency of a ring can be used to non-dimensionalize the
frequency parameter. This removes the effect of material properties from the

presentation of frequency results. This frequency parameter is defined as

1/2
L E ,
e 7
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The resulting frequency curves are shown in Fig. 3.4 for different values of a/A.
The curves converge as they approach @/my=1. This behavior is expected, as the
extensional ring frequency (@) is independent of the thickness. For higher //ma
ratios the curve is nearly horizontal, which indicates that for long shells the modes
with the lowest number of axial waves can be very close in frequency. However,
when finite elements were used to verify these results, discrepancies were found. In
order to determine the cause, a more thorough investigation into the axisymmetric

equations of motion was undertaken.

10.0 —~—x .
\\ \\ /a/h=10

N—=ah=20
N\ g;\ =50

1.0 éj_ai_‘“

Frequency Factor, w/wo

0.1
0.1 1.0 10.0

Axial Coordinate, //ma

Fig. 3.4. Frequency spectrum for n=0 with longitudinal inertia neglected.

3.4 Effect of Neglecting Longitudinal Inertia

The most significant research in this area was that of Forsberg [3.1, 3.5]. He
solved the general equations of motion (Egs. 3.1) for the axisymmetric case and

investigated the effects of various assumptions [3.1]. He showed that for the
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axisymmertric case, the general equations of motion break down into two sets. One is
a second-order system describing torsional motion. This case will not be discussed
here. The second is a sixth-order system involving radial and longitudinal motion
(coupled). He solved this system and showed that the resulting frequency spectrum
(see Fig. 3.5) is quite interesting. The two frequency curves are asymptotic to two
lines, one horizontal and one diagonal. As previously rﬁentioned, the horizontal line
at w/@wp=1 corresponds to the extensional (n=0) frequency of a ring. As the
frequency curves approach this line the mode shapes consist of primarily radial
motion. The diagonal line corresponds to longitudinal bar vibrations; as the curves
approach this line the mode shapes are dominated by longitudinal motion. In
between these two extremes, the mode shapes contain significant amounts of both
longitudinal and radial motion. In this region the displacement components are
coupled, so a radial excitation can induce significant longitudinal motion and vice

versa. For this reason errors will result if the longitudinal inertia is neglected.

However, the resulting errors may not be too severe depending on the accuracy
required. It was mentioned that for non-axisymmetric cylinder vibrations, the
solution of the frequency equation results in three distinct frequencies for each nodal
pattern, where each frequency corresponds to a mode with different relative
magnitudes of the three displacement components. In the axisymmetric case, the
two frequency curves represent the two distinct frequencies for each mode shape,
where the two frequencies correspond to modes with the same number of axial half-
waves but different relative magnitudes of radial and longitudinal displacements. If
the axial inertia is neglected, only one frequency for each mode will be present, and
the mode shapes will not have significant axial motion. Depending on the //a ratio,

the modes that are missed may not contain significant radial motion, and would



21

FREQUENCY FACTOR w/w,

SO0 15T | FLUGGE AND DONNELL EQS
m={,»=0.3 INPLANE INERTIA TERMS
\/—memnx INCLUDED
2.0 LONCITUDINAL  CURVES ARE INDEPENDENT
. MOTION OF a/h AND BOUNDARY
\ N CONDITICNS §IF SUPPORT IS
\ SYMMETRIC
/ /PIIQIMARILY RADIAL MOTION
0.5 N ! :
ggmﬁﬂ-‘! N \ PRIMARILY LONGITUDINAL
MOTION \ <M°T'°N |
02} oo A
“© " PURELY R NN
TORSIONAL \
0.4 LMOTION—/ \
50

g
o

PRIMARILY RADIAL MOTION-
u=0 AT x=0,.l/o~& ‘k

1.0 ,
N, =0 AT x=0, L/a—!
|0 03 CURVES ARE FOR ALL a/h _
e AND FOR SYMMETRIC
BOUNDARY CONDITIONS
0.2 |

FREQUENCY FACTOR w/wgy
o
W

FLUGGE AND DONNELL EQS
(RADIAL INERTIA OINLY) 1
1 1

10 2 5 . 10 20 50 100
LENGTH TO RADIUS RATIO .£/a

o

Fig. 3.5. Frequency spectrum for n=0, with and without longitudinal inertia [3.1].



22

contribute little to the radial response of the cylinder. This is illustrated by close

comparison of Figs. 3.4 and 3.5.

3.5 Effect of End Conditions

Forsberg also investigated the effect of various end conditions on the
axisymmetric vibrations of cylinders [3.5]. He showed that only the axial restraint
has a significant effect on the frequency, as shown in Fig. 3.6. For regions where
there is significant axial motion, an axial restraint at one end will cause the minimum
frequency to be approximately one half of that with no axial restraint. In addition, if
there is axial restraint at both ends, the frequencies will be the same as if there were
no axial restraints. Contrary to what would be expected, the radial restraint has very

little effect (<0.5%) on the frequency.

While the end conditions may have little effect on the frequency (if they are the
same at both ends), they may have a significant effect on the appearance of the mode
shapes. Figure 3.7 shows the lowest axisymmetric mode as obtained by Forsberg
[3.5] for the case where a/h=20 and l/a=5. For the first set of boundary conditions
(plotted with the solid line) only radial restraint is applied, while for the second set
(plotted with the dashed line) radial and axial restraints are applied. In both cases the
restraints are symmetric (same at both ends). Note that when axial restraint is
applied, the longitudinal displacements undergo a 90° phase shift in order to fulfill
the requirement that u=0 at the ends. The radial displacements also shift by 90°, and
the requirement that w=0 is met by localized distortions at the ends. These
distortions propagate far along the length due to the relative thickness (a/h=20) of the

shell. This effect may cause great confusion in attempting to identify the modes.
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While mathematically the number of axial half-waves is only one, the mode shape
definitely appears to have two axial half-waves. As noted by Goldman [3.8], this
mode is not symmetric about the mid-span, and therefore would not respond to a
uniform radial blast load. He argues that the mode should be labeled m=2.

However, this conflicts with the use of //ma in presenting frequency results.

The localized distortion also causes a large increase in the bending moment near
the ends of the shell (Fig. 3.7). Forsberg noted that the maximum bending moment
was still only about 20% of the maximum hoop stress. However, this amount of
stress may still be of concern, so it is important that the mode shapes be accurately

represented.
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Chapter 4

Finite Element Modal Analysis

Due to the complexity of the analytical solution, it is very difficult to obtain the
vibration characteristics of cylinders even for the simplest cases with ideal boundary
conditions. Handling complications such as end rings, perforations, and such would
be virtually unthinkable using analytical methods. Experimental techniques are
feasible, but can be very expensive and time consuming. This is especially true
when many design iterations are necessary. The emergence of finite element
methods in the past few decades has revolutionized the analysis of structures. It is

now much easier to accurately predict the behavior of complex systems.

The ultimate goal of this research was to develop accurate finite element
modeling techniques to be used in designing ICF target chambers. However, the
unexpected results obtained while verifying basic cylinder models led to an in-depth

investigation of the axisymmetric modal characteristics of cylinders.

4.1 Modeling

The commercial finite element code ANSYS® [4.1] was used throughout this
investigation. In order to verify results within ANSYS, several different methods
were used to model the cylinder. Two basic types of models were implemented,
axisymmetric and non-axisymmetric. The non-axisymmetric models will be referred
to as "slice" models, as they were used to model varying circumferential amounts of
the cylinder, i.e., 30°, 90°, 360°, etc. A very small slice (1-2°) is similar to an

axisymmetric model. The following types of elements all gave results that



27

converged within a few percent: two-node axisymmetric shell, four-node

axisymmetric solid, four-node plate/shell, and eight-node isoparametric solid.

Two methods were used to solve for the mode shapes and natural frequencies.
The full subspace method uses the full stiffness and mass matrices, thus including
every nodal degree of freedom as unknowns. This produces the most accurate
results, but can be very time consuming. For dynamic analyses, very accurate results
can usually be obtained much faster through the use of a .reduced subspace method.
This procedure reduces the size of the stiffness and mass matrices by in effect
lumping the mass at master degrees of freedom (mdofs). However, caré must be
taken when selecting the mdofs. As noted in the previous chapter, the cylinders in
this study have significant motion in the axial direction, as well as the expected
radial motion. Thus, axial mdofs must be selected as well as radial mdofs in order to
obtain correct results. It was found that serious errors can result from a failure to do

this.

4.2 General Cylinder Vibrations

A half-circumference symmetry (180° slice), four-node shell element model of a
cylinder was used to verify the finite element modeling techniques. The following
dimensions and material properties were chosen to match the example given by
Vronay and Smith [4.2]: 1=12.0in.,a=3.0in., =0.01 in., E = 29.6 x 106 psi, v =
0.29, p = 0.733 x 103 Ib-sec?/in?. The model is shown in Fig. 4.1. The end
conditions for this example are completely clamped, which means there is no
translation or rotation at the ends (u=v=w=0w/ox=0). The use of symmetry results in

some modes not being found, as the mode shape must be compatible with the
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Fig. 4.1. Half cylinder finite element model.
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boundary conditions used to enforce symmetry. The symmetry boundary conditions
are: no circumferential translation and no rotation about the edge of symmetry. For a
half model of a cylinder, the only modes that will not be found are those which are

primarily torsional.

A deformed mesh plot of the lowest mode is shown in Fig. 4.2. Determining the
mode shape from plots such as this can be difficult, particularly with higher modes.
A contour plot of the radial displacements provides an easier way to identify the
modes. If the half model of the cylinder is "unrolled" and laid flat, the contour plot
of Fig. 4.3 results. Note that the contour levels represent the relative radial
displacements of the cylinder wall. One half wave is visible in the axial direction,
and three waves in the circumferential direction. This corresponds to a mode shape
with m=1 and n=6. Table 4.1 compares the frequencies for several modes with the
results given in Ref. [4.2]. The results compare very well, verifying the meshing

density and the type of finite element used in the model.

Table 4.1. Comparison of finite element and analytical [4.2] modal frequencies.

%——

m Source n
3 4 5 6 7
1 Analytical 1154 765 581 539 599
Finite Element 1159 767 580 533 589
2 Analytical 1752 1287 1022 908
Finite Element 1767 1302 1034 913
3 Analytical 1719 1431

1751 1461

Finite Element
%——_—
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Fig. 4.2. Deformed mesh plot showing the mode shape m=1 and n=6.

30



31

- Axi

- Circumferential

men

~75.859
~59.002
~12.144
—25.286
~8.429
8.429
25.286
42.144
59.002
e AT

Fig. 4.3. Contour plot of radial displacements for the m=1 and n=6 mode shape.



32

4.3 Axisymmetric Cylinder Vibrations

As mentioned in Chapter 3, the axisymmetric (n=0) modes are generally very
high in the frequency spectrum. For the cylinder used in the example above, the first
axisymmetric mode occurs at 7981 Hz, and the mode shape is shown in Fig. 4.4.
Because the modal displacements are the same all the way around the circumference,
this symmetryk can be exploited to lead to much simpler finite element models. One
method is to model a very small (1-5°) slice of the cylinder, using the same
symmetry conditions as in the 180° model. An even greater simplification results by
using axisymmetric elements formulated especially for this purpose. These elements
reduce the problem from three dimensions to two dimensions, which greatly reduces

the size and complexity of the solution.

Figure 4.5a shows the first mode from a two-node axisymmetric shell element
model using the same dimensions, material properties, and end conditions as the
previous example. The axisymmetric mode shape is like a cross-sectional view of
the deformed cylinder shown in Fig. 4.4, with the straight line representing the
undeformed cylinder wall (note that the cylinder axis is horizontal, whereas in Fig.
4.4 it was vertical). The frequency of 7993 Hz from the axisymmetric model is
within 0.15 percent of the 7981 Hz result from the 180° model, indicating excellent
agreement between modeling methods. Goldman [4.3] also solved this example
analytically and obtained a frequency of 8017 Hz for this mode, which agrees with
the finite element results within less than half a percent. The mode shape also

compares well; his results are shown in Fig. 4.5b (see curve labeled n=0).
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(a) Finite element results (m=1, n=0).
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Fig. 4.5. Comparison of finite element and analytical [4.3] results for lowest
axisymmetric mode.
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Due to their simplicity, the two-node axisymmetric elements were used to
investigate the effects of shell dimensions and end conditions on the mode shapes
and frequencies. The two node elements are intended primarily for thin shells, but
they performed quite well even for relatively thick shells. To ensure accurate results,
four-node axisymmetric elements were used to verify the two-node models when the

shells under investigation were relatively thick.

4.4 Effect of Cylinder Dimensions

The effect of the cylinder dimensions on the modal characteristics was studied
using simply supported end conditions (i.e., w=0). Analytical results for this were
presented in Chapter 3, but it serves as a verification and a useful illustration of the
results. The material properties used were: E =216 GPa, v = 0.3, p= 7800 kg/m3.
The radius was fixed at 1 m, and the length and thickness were varied to obtain the
desired //a and a/h ratios. This yields a value for the frequency parameter, @,=876
Hz. The mode shapes and frequencies for //a=4, a/h=20 are shown in Fig. 4.6. Note
that the radial and axial displacement components have been plotted separately, side
by side. The mode shapes are scaled so that the larger of the two displacement
components is normalized to unity. The modes are shown in order of increasing
frequency, but not all modes have been plotted. The omitted modes followed the

existing trend in displacement shape and varied only in the number of waves.

The general trend in mode shapes is the same as that outlined previously in
Section 3.4 and shown in Fig. 3.5. For the first mode shape (frequency=622 Hz) the

radial and axial displacements both have one half wave along the length of the
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cylinder, but the axial component is shifted 90° in phase. The axial displacement is
larger than the radial, which is expected for a mode on the lower frequency curve
(Fig. 3.5) with //ma=4. The next mode has two axial half waves, which corresponds
to //ma=2. As shown in Fig. 3.5, when the low frequency curve is followed in the
direction of decreasing I/ma (increasing m), the mode shape will have
proportionately more radial motion. This is reflected in the relative magnitudes of
the radial and axial components in the second mode of Fig. 4.6. The next several
modes follow the trend of increasing radial motion, and the frequencies become
more closely spaced as @/@, approaches unity. The mode at 924 Hz is the second
m=1 mode, which corresponds to //ma=4 on the upper frequency curve in Fig. 3.5.
Several more modes from the lower frequency curve are picked up before the next
mode (1416 Hz, m=2) on the high frequency curve. The plots of the two modes on
the high frequency curve illustrate the relative increase in the axial displacement

component as //ma is decreased.

The mode shapes and frequencies for //a=2, a/h=20 are shown in Fig. 4.7. The
modal characteristics are very similar to those just discussed. The validity of
nondimensionalizing using the axial wave length (/ma) is demonstrated by
comparing the first mode here to the second mode from l/a=4 (Fig. 4.6). Because
one axial half wave is the same length for these modes, the frequency is the same.
Also illustrated is the fact that the radial to axial displacement ratio is a function of

l/ma, as the ratio is the same for these two modes.

The mode shapes and frequencies for I/a=2, a/h=100 are shown in Fig. 4.8. They
can be compared to those in Fig. 4.6 to see the effect of wall thickness. As found by

previous investigators, the wall thickness only affects the lower curve of the
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frequency spectrum below //ma =1. This is illustrated by the fact that the lowest

modes in Figs. 4.6 and 4.8 have nearly identical frequencies, but as m increases the

frequencies start to diverge.

The results of these three sets of parameters, along with many others, were used
to produce Fig. 4.9. This is a plot of the frequency spectrum for n=0, with the same

format as Figs. 3.5 and 3.6. The results agree very closely with those plots.
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Fig. 4.9. Frequency spectrum for n=0 from finite element models
(simply supported end conditions).
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4.5 Effect of End Conditions

To determine their effects on the modal characteristics, the end conditions were
first varied with all other parameters held constant. The results from the case of
l/la=4, a/h=20, w=0 (Fig. 4.6) are used as the baseline, and will be referred to as the
radially restrained case. When the radial restraints are removed, the result is free end
conditions. The resulting mode shapes are shown in Fig. 4.10. Forsberg [4.4] stated
that "a shell which is force-free at the boundary has essentially the same modal
characteristics as one which is radially restrained but force-free". While this is true
for the two lowest modes, as seen by comparing Figs. 4.6 and 4.10, this is not true
for the higher modes. While the radial displacement at the ends is nearly zero for the
first two modes, the free end conditions result in very different mode shapes for the
remaining modes. If the regions between the ends of the cylinder and the first radial
displacement zero crossings are taken as axial half waves, the number of half waves
corresponds to those for the radially restrained case. As m is increased, the
frequencies for the radially restrained case increase slightly faster than those for the

free case, with a difference of 6% at m=7.

When both the axial and radial restraints were added, the modes in Fig. 4.11 were
obtained. The results for the first mode are similar to those given in Fig. 3.7; the
radial and axial displacements both shift 90° along the length from the radially
restrained case (Fig. 4.6) , and the axial displacement is distorted at the ends so that
w=0. As mentioned previously, confusion can arise over whether this should be
called the m=1 or m=2 mode. It is the opinion of the author that the m=1 notation is

correct. This interpretation allows the use of the dimensionless axial half wave
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Fig. 4.10. Mode shapes with l/a=4, a/h=20 (free end conditions).
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Fig. 4.11. Mode shapes with l/a=4, a/h=20 (end conditions u=w=0).
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length //ma in plotting results, and also causes the axial and radial displacements to
more consistently have the same number of half waves (m). This allows one to make
sense of the otherwise extremely confusing appearance of the higher modes. The
first anomaly is noticed in the fifth mode at 873 Hz. The radial displacement appears
to be superimposed on a line which runs at a small angle to the undeformed
(horizontal) orientation. The axial displacement is superimposed to one side of the
undeformed location. As with the lower modes, the localized distortions at the shell
ends is causing the radial displacement to have the appearance of m=6, while the
axial displacement has the "mathematically correct” m=5, which corresponds to this
being the fifth mode by order of frequency. The sixth mode at 874 Hz is also
unusual. Now the radial displacement is superimposed to one side, and has the
appearance of m=5. The correct interpretation is probably that m=6, as shown in the
axial displacement and by order of frequency. It is interesting to note that these
distorted modes have occurred at frequencies close to the extensional frequency of a
ring (the frequency parameter @,). The seventh mode at 915 Hz has seven radial
half waves, which corresponds to the ordering, but now the axial displacement has
six waves. It seems probable that the axial displacements are now being distorted by
the end conditions, causing them to appear to have a different number of half waves.
This conclusion is reinforced by the similarity between this mode and the m=7 (915
Hz) mode from the radial restraint case (Fig. 4.6). Comparison to the radial restraint
case also aids in the interpretation of the remaining modes. If the two cases are
compared, the ordering of the modes is the same, and the frequencies are similar.
This leads to the conclusion that the 917 Hz mode of Fig. 4.11 is a superimposed
version of the m=1 mode from other frequency for this mode shape. (It was pointed

out earlier that every mode shape has two distinct frequencies associated with it.)
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Like the first m=1 mode for these end conditions, the axial and radial displacements
are shifted 90° and have localized distortions. In this mode, the axial displacement
also has seven half waves superimposed on it, while the radial displacement has six.
Due to the fact that this mode and the m=7 mode are very close in frequency, it
seems plausible that the mode shapes are combinations of these two modes. A
similar superimposed shape is present in the second m=2 mode at 1413 Hz, and can

be explained in the same way.

The addition of axial restraint thus has a strong influence on the mode shapes.
The identification of modes becomes very complicated due to differences between
the mathematical number of half waves and the number visible in the displacement
components. Further complications arise due to occasional superimposing of mode
shapes with the mode shapes of nearby frequencies. Consideration of these effects,
as well as the results from a similar case without axial restraint, help to properly

interpret the mode shapes.

The effect of rotational restraint was investigated by adding the boundary
condition ow/dk=0 to the previous case. The results are presented in Fig. 4.12, and
should be compared to Fig. 4.11. The rotational restraint had a slight (<1%) effect
on the lower modal frequencies, but its influence increased to over 5% at the highest
modes reported. This is due to the increasing influence of the bending stiffness as
the axial wave length decreases. This resulted in the frequency order of the modes
being changed slightly. The mode that was established as m=5 in the previous case
now occurs at a higher frequency than the m=6 mode, and the m=7 mode is now

higher than the second m=1 mode.
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Fig. 4.12. Mode shapes with l/a=4, a/h=20 (end conditions u=w=0w /9x=0).
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Given that the axial restraint was shown to have the greatest influence on mode
shapes, it is appropriate to look at how this effect might change with different //a
ratios. Figure 4.13 contains the results for //a=2. Because this shell is shorter, the
second and third modes are close to the ring frequency and show the superimposed
effect. The second mode shapes for m=1,2, and 3 have the shapes of nearby modes
superimposed on the radial displacement. Figure 4.14 shows the results for I/a=8.
Note that in this case there are many modes that occur below the ring frequency, so

the superimposed mode shapes do not occur until the twelfth mode.

Figure 4.15 is a plot of the frequency spectrum containing the results from
restraint conditions of w=0 and u=w=0. This shows that in spite of the significant
changes in mode shapes, the axial restraint had almost no effect on frequency. A
strange effect was noted on the lower frequency curve in the region 0.8 < //ma < 2.0.
In this region it appears as though the axial restraint caused a slight upward shift of
the frequencies, toward the ring frequency. However, it is possible that this is due to

numerical errors as the shift is on the order of 1%.
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Fig. 4.13. Mode shapes with l/a=2, a/h=20 (end conditions u=w=0).
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Chapter 5

Experimental Modal Analysis

In Chapter 4, finite element models were used to investigate the effect of end
conditions on axisymmetric cylinder vibrations. It was found that cylinders of short
to medium length may have very unusual mode shapes. This type of behavior is
unusual for a linear structure, so an experimental investigation was carried out to

verify these results.

5.1 Experimental Setup

The purpose of the experimental phase of this investigation was to confirm the
existence of the superimposed axisymmetric mode shapes that occurred under axial
restraint in the finite element analysis. Previous investigators have found that
perfectly clamped conditions are difficult to enforce in practice. However, Resnick
[5.1] has shown that large end masses provide enough inertial resistance to
approximate an axial restraint in cylinder modal analysis. Finife element models
were used to determine the end mass necessary to simulate axial restraint and cause

the superimposed modes to appear.

The sine excitation method was used to determine the modal frequencies and
shapes. This technique is well documented; a comprehensive summary can be found
in Ref. [5.2]. The method is based on the premise that if a sinusoidal excitation is
applied to a linear system, the response will be sinusoidal. Furthermore, the
amplitude ratio of the response to the excitation will be greatly increased when the

frequency of the excitation is near a natural frequency of the system. This method
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was the most widely used technique to carry out experimental modal analysis until
the emergence of impulse testing in the last few decades. While the impulse method
is generally faster and less tedious, the equipment available was not suitable for the

high frequencies of the test cylinder.

]

The equipment used in the experiment is listed in Table 5.1. Excitation from the
shaker was transmitted by a small rod threaded into the cylinder, which was
supported by foam for isolation. The input force was measured by the load cell
between the shaker and the rod. The accelerometer was attached using wax to allow
easy movement between measurement locations. A digital frequency counter was
used to monitor the input frequency, while the digital oscilloscope was used to
compare the input and response for mode shape identification. Figure 5.1 is a
schematic of the experimental setup, while Fig. 5.2 is a photograph of the actual

system.

Table 5.1. List of experimental equipment.

Two Channel Digital Oscilloscope, Nicolet Model 3091
Frequency Counter-Timer, Fluke Model 1953A

Function Generator, Wavetek Model 110

Vibration Exciter, Briiel & Kjar Model 4809

Power Amplifier (for shaker), Briiel & Kjzr Model 2706
Load Cell, PCB Model 208A02

Accelerometer, PCB Model 303A03

Power Supply, PCB Model 480B
-—_——_——'———_———_——_———_—-—_-__

The cylinder used in testing was cold drawn aluminum tubing with a nominal
radius of 0.1046 m, thickness of 8.4 mm, and length of 0.260 m. These dimensions
yield a radius to thickness ratio of 12.5 and a length to radius ratio of 2.5. Small

holes were drilled at a quarter and half way from the ends to provide attachments for
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Fig. 5.1. Schematic of experimental modal analysis setup.

ig. 5.2. Phoo of experimental modal analysis setup.
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the shaker. The different excitation points were used to excite the modes with large
displacements at those locations. A grid was laid out on the outside surface of the
cylinder to locate the measurement locations for initial mode identification. The grid
lines were placed 30° apart in the circumferential direction and at five, equally-
spaced locations along the length. The cylinder was tested initially in the free
condition to verify the technique (results are presented in Section 5.3). Then to
provide radial and axial restraint at the ends, 0.25 m x 0.25 m x 0.025 m aluminum
plates were bonded to the cylinder using cyanoacrylate adhesive (epoxy was also
tried and found to be ineffective). Welding the end plates would have provided a
more solid attachment, but was avoided due to concerns about weld non-uniformity

and residual stresses causing distortion of the mode shapes.

5.2 Experimental Procedure

A structure is said to have a resonance when an input force at a given frequency
results in a very large amplitude response. Resonant frequencies were identified by
observing the input and response while sweeping the excitation through frequencies
of interest. Once the resonant frequencies were found, the associated mode shapes
were identified by comparing the amplitude ratio and phase at various locations on
the cylinder. Normally in vibrations testing, the accelerometer must be firmly
attached to the surface of interest. In this case, due to the high frequency and low
amplitude of the response, there was little difference between measurements whether
the accelerometer was mounted using a stud, adhesiVe, wax, or merely held in place
with a finger. Thus the modes could usually be identified by holding the

accelerometer in place with a finger and sliding it along the surface in the
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circumferential and axial directions. The accelerometer was mounted using wax

when more accuracy was desired, e.g., when producing the mode shape plots.

In this study, only the axisymmetric modes were of interest. Hereafter, all the
results presented in this chapter can be assumed to be for axisymmetric (n=0)

vibration.

The mode shapes can be identified and plotted using the response-to-input
amplitude ratio and phase information. The modal displacement is directly
proportional to the amplitude ratio, and will be positive or negative depending on
whether the response and excitation are in or out of phase. To illustrate this,
representations of the measurements as seen on the oscilloscope are reproduced in
Fig. 5.3. The traces correspond to the results obtained from the free cylinder while
exciting at 8025 Hz. Figure 5.3a represents a measurement at one quarter of the way
from one end, while Fig. 5.3b is at three quarters from the same end. In both plots
the input force is the top trace, while the acceleration is the bottom trace. From Fig.
5.3a, the peak to peak amplitude of the response can be divided by that of the input,
yielding an amplitude ratio of 2.4 between the signals at this location. The signals
are in phase, which will arbitrarily be taken as a positive modal displacement. From
Fig. 5.3b, this method yields an amplitude ratio of 2.2. At this iocation the signals
are out of phase, which then corresponds to a negative modal displacement. These
modal displacements can then be plotted as shown by the two data points in Fig.
5.3c. As more measurements are taken along the length of the cylinder, the mode
shape plot can be filled in as indicated by the dotted line, in this case illustrating a
mode with two axial half waves. The maximum modal displacements were

normalized to unity as in the previous chapter.
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Fig. 5.3. Representation of experimental measurements and corresponding mode plot.
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5.3 Experimental Results for Free Conditions

The modal analysis of the cylinder described in Section 5.1 was first carried out
in the free state to verify the experimental procedure. Table 5.2 lists the frequencies
obtained experimentally, the finite element frequencies, and the percent difference
between them. The results show excellent correlation, as the frequencies are within a
few percent. The plots in Fig. 5.4 compare the experimental mode shapes with those
obtained using finite elements. The mode shapes show some fluctuations; possible
sources of experimental error are imperfections in the cylinder and drifting of the
excitation frequency. The amplitu&e ratio changes rapidly when the excitation
approaches resonance, so the few Hertz variation noticed in the excitation frequency
during measurements makes this suspect. The first, third, and fifth modes were
obtained by applying the excitation at mid-span, while the second and fourth modes
were excited at x/1=0.25.

Table 5.2. Comparison of experimental and finite element results with free end

conditions (n=0).

Mode Shape Frequency (Hz) Percent
(# axial half waves) Experimental Finite Elements Difference
1 7402 7339 0.9
2 7822 7700 1.6
3 7868 7743 1.6
4 8025 7907 1.5
5 8597 8493 1.2

_—-_—_—-———-————__—'_——'_—'_———_—————________—
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5.4 Experimental Results with End Plates

Once the experimental technique had been verified, the end plates were bonded
onto the ends of the cylinder (dimensions given in Section 5.1) and the tests were
repeated. Although the end plates are actually square, they were assumed to be
round so that an axisymmetric finite element model could be used to predict the
response. The outside diameter of the plates was taken as 0.25 m, which corresponds
to the minimum diameter provided by the 0.25 m square plates. Due to the thickness

of the end plates, 4-node elements were used rather than the 2-node shell elements.

Table 5.3 lists the experimental and finite element frequencies, and the percent
difference between them. As before, the results compare extremely well. The plots
in Fig. 5.5 show the experimental and finite element mode shapes in order of
increasing frequency. The second mode was obtained by applying the excitation at
mid-length, while the remaining modes were excited at x//=0.25. The plots show
excellent agreement between experiment and finite elements, and also clearly verify
the existence of the superimposed mode shapes.

Table 5.3. Comparison of experimental and finite element results with clamped
end conditions simulated by end plates (n=0).

Mode Shape Frequency (Hz) Percent
(# axial half waves) Experimental Finite Eleménts Difference
1 7801 7783 0.2
2 8171 8201 0.4
3 8503 8568 0.8
4 9398 9260 1.5

w
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Chapter 6

Summary and Conclusions

The axisymmetric vibration characteristics of cylinders must be known in order
to predict the response to internal blast loads. A review of analytical methods for
predicting shell vibrations showed that the general equations of motion are very
difficult to solve, even for the axisymmetric case. Neglecting tangential inertia helps
simplify the equations of motion, but can lead to errors in predicting the natural
frequencies and mode shapes when the wavelength parameter //ma is between 0.5
and 10. The resulting equations also do not predict the superimposed mode shapes

noted in this study.

Finite element models were developed to further investigate the effect of cylinder
dimensions and end conditions on the modal characteristics. This was found to be a

very effective analysis method.

It was noted by previous researchers that the natural frequencies change only
slightly when various symmetric end conditions are applied. This was found to be
generally true in this study. However, it was noted that the boundary conditions had
a noticeable effect on the frequency (up to 5%) when the cylinder was relatively
thick (a/h>20), as might be expected. While the end conditions did not have large

effects on the modal frequencies, they had a much greater effect on the mode shapes.

Previous researchers have stated that the case of free end conditions produces the
same results as that of radial restraint. However, it was found that the mode shapes
only matched for the lowest modes. For higher modes the shapes were significantly

different. In addition, the frequencies for free end conditions were lower by a few
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percent in the higher modes. Another interesting phenomenon was that the modal
frequencies that were just below @, (the primary extensional frequency of a ring

with the same properties) increased toward @, slightly.

The effect of rotational restraint was also investigated. The rotational restraint
had a slight (<1%) effect on the lower modal frequencies, but its influence increased
to over 5% at the highest modes reported. This is due to the increasing influence of
the bending stiffness as the axial wave length decreases. It can result in the

frequency ordering of the modes being changed slightly.

The addition of axial restraint was found to have a strong influence on the mode
shapes. The identification of modes becomes very complicated due to differences
between the mathematical number of half waves and the number visible in the
displacement components. Further complications arise due to occasional
superimposing of mode shapes with the mode shapes of nearby frequencies.
Consideration of these effects, as well as the results from a similar case without axial
restraint, help to properly interpret the mode shapes. The use of incorrect modal
characteristics in predicting the transient response can lead to serious errors.
Therefore, these results are an important first step toward accurate assessment of

internal blast loadings on cylinders.





